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1. The proof

The proof of the Hilbert Nullstellensatz below is essentially the same as the first
one provided by Zariski in [3], except that the inductive argument in lemma 1.6
below is reversed. Other interesting proofs depending on the notion of Jacobson
ring or Hilbert ring are provided by Krull in [2] and by Goldman in [1]. The main
point of all of these proofs is that they do not depend on Noether normalization.

Lemma 1.1. Suppose K is a field and R ⊆ K is a subring. If K is integral over
R, then R is a field.

Proof. This proof is well known. Suppose r ∈ R. Pick an equation (1/r)n =
bn−1(1/r)n−1 + · · ·+ b0 of integral dependence with b0, . . . , bn−1 ∈ R. Multiplying
by rn−1 gives an equation that shows 1/r ∈ R. �

Lemma 1.2. Suppose K is a field, R ⊆ K is a subring, x ∈ K, and R[x] = K.
Then for some nonzero s ∈ R the subring R[1/s] is a field, and x is algebraic over
it.

Proof. Let F = frac(R) ⊆ K be the fraction field of R. Since F [x] = K, we see that
x is algebraic over F , with minimal polynomial xn + fn−1x

n−1 + · · ·+ f0, say. Let
s ∈ R be a common denominator for f0, . . . , fn−1, so that f0, . . . , fn−1 ∈ R[1/s].
This makes K integral over R[1/s], so by lemma 1.1, R[1/s] is a field. �

Lemma 1.3. Suppose R = Z or R = F [T ] is a polynomial ring over a field F .
Suppose u ∈ R. Then R[1/u] is not a field.

Proof. This fact is well known. Since R has an infinite number of prime elements,
reciprocals for all of them cannot be provided by inverting just u. �

Lemma 1.4. Suppose K is a field, F ⊆ K is a subfield, and x ∈ K. Suppose
u ∈ F [x] and F [x, 1/u] = K. Then F [x] = K and x is algebraic over F .

Proof. If x were transcendental over F , then F [x] would be a polynomial ring, and
by 1.3, F [x, 1/u] could not be a field. Hence x is algebraic over F , and thus F [x] is
already a field, with 1/u ∈ F [x] and F [x] = F [x, 1/u] = K. �

Lemma 1.5. Suppose K is a field, R ⊆ K is a subring, and x ∈ K. Suppose
u ∈ R[x] and R[x, 1/u] = K. Then for some nonzero s ∈ R we have R[1/s][x] = K,
the subring R[1/s] is a field, and x is algebraic over R[1/s].
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Proof. Let F = frac(R) ⊆ K. Applying lemma 1.4 we see that F [x] = K and x is
algebraic over F . Since 1/u ∈ K we may write it in the form 1/u = fn−1x

n−1+· · ·+
f0 with f0, . . . , fn−1 ∈ F . Let t ∈ R be a common denominator for f0, . . . , fn−1,
so that f0, . . . , fn−1 ∈ R[1/t]; thus 1/u ∈ R[1/t][x] and R[1/t][x] = K. Applying
lemma 1.2 to R′ = R[1/t] we find an element s′ ∈ R′ so that R′[1/s′] is a field, and x
is algebraic over it. Writing s′ = q/tm we see that R′[1/s′] = R[1/t][1/s′] = R[1/qt],
so setting s = qt gives what we wanted. �

Lemma 1.6. Suppose K is a field, A ⊆ K is a subring, x1, . . . , xn ∈ K, and
A[x1, . . . , xn] = K. Then for some nonzero s ∈ A the subring A[1/s] is a field and
K is a finite algebraic extension of it.

Proof. If n ≥ 1 we apply lemma 1.5 with R = A[x1, . . . , xn−1], x = xn, and u = 1 to
get an element s′ ∈ R so that K ′ = A[x1, . . . , xn−1][1/s′] is a field and xn is algebraic
over it. If n ≥ 2 we may apply the lemma again to get s′′ ∈ R′ = A[x1, . . . , xn−2]
so that K ′′ = A[x1, . . . , xn−2][1/s′′] is a field and K ′ is a finite algebraic extension
of it. Applying the lemma n− 2 more times gives the result. �

Theorem 1.7 (Hilbert Nullstellensatz). Suppose F ⊆ K are fields, x1, . . . , xn ∈ K,
and F [x1, . . . , xn] = K. Then K is a finite algebraic extension of F .

Proof. Apply lemma 1.6 with A = F and observe that F [1/s] = F . �

Corollary 1.8. Suppose F is an algebraically closed field, R = F [X1, . . . , Xn] is
a polynomial ring, and M ⊆ R is a maximal ideal. Then there exist elements
c1, . . . , cn ∈ F so that M = (X1 − c1, . . . , Xn − cn).

Proof. This proof is well known. Let K = R/M , and set xi = Xi + M ∈ K.
Applying 1.7 we see that K is an algebraic extension of F ; since F is algebraically
closed, the map θ : F → K is an isomorphism. Setting ci = θ−1(xi), we see that
the ideal (X1 − c1, . . . , Xn − cn) is a maximal ideal contained in M , hence is equal
to M . �

Corollary 1.9. Suppose F is a field, R = F [X1, . . . , Xn] is a polynomial ring,
I ⊆ R is an ideal, and r ∈ R is an element contained in every maximal ideal that
contains I. Then some power of r is contained in I.

Proof. This proof is essentially due to Rabinowitch. Form the ring of fractions
S = (R/I)[1/r] of the quotient ring R/I. Assuming that no power of r is contained
in I, it follows that S is a nonzero noetherian ring, and we may let N ⊆ S be a
maximal ideal. The ring K = S/N is a field and is generated as an F -algebra by the
images of X1, . . . , Xn, 1/r, so by 1.7 is a finite algebraic extension of F . The image
of the map φ : R → S/N is an intermediate ring in a finite algebraic extension, so
is itself a field. Letting M be the kernel of φ, we see that M is a maximal ideal
which does not contain r. �

Corollary 1.10. Let K be a field which is finitely generated as a Z-algebra. Then
K is a finite field.

Proof. Apply lemma 1.6 with A = im(Z → K) to obtain an element s ∈ A with
A[1/s] a field over which K is finite algebraic. Since A[1/s] is a field, A must be a
finite prime field, for otherwise, A would be isomorphic to Z and lemma 1.3 would
apply. Hence A = A[1/s] and K is a finite algebraic extension of A, ensuring it is
a finite field, too. �
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