THE HILBERT NULLSTELLENSATZ

DANIEL R. GRAYSON

1. The proof

The proof of the Hilbert Nullstellensatz below is essentially the same as the first one provided by Zariski in [3], except that the inductive argument in lemma 1.6 below is reversed. Other interesting proofs depending on the notion of *Jacobson* ring or *Hilbert* ring are provided by Krull in [2] and by Goldman in [1]. The main point of all of these proofs is that they do not depend on Noether normalization.

Lemma 1.1. Suppose K is a field and $R \subseteq K$ is a subring. If K is integral over R, then R is a field.

Proof. This proof is well known. Suppose $r \in R$. Pick an equation $(1/r)^n = b_{n-1}(1/r)^{n-1} + \cdots + b_0$ of integral dependence with $b_0, \ldots, b_{n-1} \in R$. Multiplying by r^{n-1} gives an equation that shows $1/r \in R$.

Lemma 1.2. Suppose K is a field, $R \subseteq K$ is a subring, $x \in K$, and R[x] = K. Then for some nonzero $s \in R$ the subring R[1/s] is a field, and x is algebraic over it

Proof. Let $F = \operatorname{frac}(R) \subseteq K$ be the fraction field of R. Since F[x] = K, we see that x is algebraic over F, with minimal polynomial $x^n + f_{n-1}x^{n-1} + \cdots + f_0$, say. Let $s \in R$ be a common denominator for f_0, \ldots, f_{n-1} , so that $f_0, \ldots, f_{n-1} \in R[1/s]$. This makes K integral over R[1/s], so by lemma 1.1, R[1/s] is a field. \square

Lemma 1.3. Suppose $R = \mathbb{Z}$ or R = F[T] is a polynomial ring over a field F. Suppose $u \in R$. Then R[1/u] is not a field.

Proof. This fact is well known. Since R has an infinite number of prime elements, reciprocals for all of them cannot be provided by inverting just u.

Lemma 1.4. Suppose K is a field, $F \subseteq K$ is a subfield, and $x \in K$. Suppose $u \in F[x]$ and F[x, 1/u] = K. Then F[x] = K and x is algebraic over F.

Proof. If x were transcendental over F, then F[x] would be a polynomial ring, and by 1.3, F[x, 1/u] could not be a field. Hence x is algebraic over F, and thus F[x] is already a field, with $1/u \in F[x]$ and F[x] = F[x, 1/u] = K.

Lemma 1.5. Suppose K is a field, $R \subseteq K$ is a subring, and $x \in K$. Suppose $u \in R[x]$ and R[x, 1/u] = K. Then for some nonzero $s \in R$ we have R[1/s][x] = K, the subring R[1/s] is a field, and x is algebraic over R[1/s].

Date: October 23, 2001. Supported by the NSF.

GRAYSON

2

Proof. Let $F = \operatorname{frac}(R) \subseteq K$. Applying lemma 1.4 we see that F[x] = K and x is algebraic over F. Since $1/u \in K$ we may write it in the form $1/u = f_{n-1}x^{n-1} + \cdots + f_0$ with $f_0, \ldots, f_{n-1} \in F$. Let $t \in R$ be a common denominator for f_0, \ldots, f_{n-1} , so that $f_0, \ldots, f_{n-1} \in R[1/t]$; thus $1/u \in R[1/t][x]$ and R[1/t][x] = K. Applying lemma 1.2 to R' = R[1/t] we find an element $s' \in R'$ so that R'[1/s'] is a field, and x is algebraic over it. Writing $s' = q/t^m$ we see that R'[1/s'] = R[1/t][1/s'] = R[1/qt], so setting s = qt gives what we wanted.

Lemma 1.6. Suppose K is a field, $A \subseteq K$ is a subring, $x_1, \ldots, x_n \in K$, and $A[x_1, \ldots, x_n] = K$. Then for some nonzero $s \in A$ the subring A[1/s] is a field and K is a finite algebraic extension of it.

Proof. If $n \geq 1$ we apply lemma 1.5 with $R = A[x_1, \ldots, x_{n-1}], x = x_n$, and u = 1 to get an element $s' \in R$ so that $K' = A[x_1, \ldots, x_{n-1}][1/s']$ is a field and x_n is algebraic over it. If $n \geq 2$ we may apply the lemma again to get $s'' \in R' = A[x_1, \ldots, x_{n-2}]$ so that $K'' = A[x_1, \ldots, x_{n-2}][1/s'']$ is a field and K' is a finite algebraic extension of it. Applying the lemma n-2 more times gives the result.

Theorem 1.7 (Hilbert Nullstellensatz). Suppose $F \subseteq K$ are fields, $x_1, \ldots, x_n \in K$, and $F[x_1, \ldots, x_n] = K$. Then K is a finite algebraic extension of F.

Proof. Apply lemma 1.6 with A = F and observe that F[1/s] = F.

Corollary 1.8. Suppose F is an algebraically closed field, $R = F[X_1, \ldots, X_n]$ is a polynomial ring, and $M \subseteq R$ is a maximal ideal. Then there exist elements $c_1, \ldots, c_n \in F$ so that $M = (X_1 - c_1, \ldots, X_n - c_n)$.

Proof. This proof is well known. Let K = R/M, and set $x_i = X_i + M \in K$. Applying 1.7 we see that K is an algebraic extension of F; since F is algebraically closed, the map $\theta: F \to K$ is an isomorphism. Setting $c_i = \theta^{-1}(x_i)$, we see that the ideal $(X_1 - c_1, \ldots, X_n - c_n)$ is a maximal ideal contained in M, hence is equal to M.

Corollary 1.9. Suppose F is a field, $R = F[X_1, ..., X_n]$ is a polynomial ring, $I \subseteq R$ is an ideal, and $r \in R$ is an element contained in every maximal ideal that contains I. Then some power of r is contained in I.

Proof. This proof is essentially due to Rabinowitch. Form the ring of fractions S = (R/I)[1/r] of the quotient ring R/I. Assuming that no power of r is contained in I, it follows that S is a nonzero noetherian ring, and we may let $N \subseteq S$ be a maximal ideal. The ring K = S/N is a field and is generated as an F-algebra by the images of $X_1, \ldots, X_n, 1/r$, so by 1.7 is a finite algebraic extension of F. The image of the map $\phi: R \to S/N$ is an intermediate ring in a finite algebraic extension, so is itself a field. Letting M be the kernel of ϕ , we see that M is a maximal ideal which does not contain r.

Corollary 1.10. Let K be a field which is finitely generated as a \mathbb{Z} -algebra. Then K is a finite field.

Proof. Apply lemma 1.6 with $A = \operatorname{im}(\mathbb{Z} \to K)$ to obtain an element $s \in A$ with A[1/s] a field over which K is finite algebraic. Since A[1/s] is a field, A must be a finite prime field, for otherwise, A would be isomorphic to \mathbb{Z} and lemma 1.3 would apply. Hence A = A[1/s] and K is a finite algebraic extension of A, ensuring it is a finite field, too.

References

- [1] Oscar Goldman. Hilbert rings and the Hilbert Nullstellensatz. Math. Z., 54:136–140, 1951.
- [2] Wolfgang Krull. Jacobsonsches Radikal und Hilbertscher Nullstellensatz. In Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pages 56–64, Providence, R. I., 1952. Amer. Math. Soc.
- [3] Oscar Zariski. A new proof of Hilbert's Nullstellensatz. Bull. Amer. Math. Soc., 53:362–368, 1947.

University of Illinois at Urbana-Champaign

 $E\text{-}mail\ address: \verb|danQmath.uiuc.edu| \\ URL: \verb|http://www.math.uiuc.edu/~dan| \\$