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ABSTRACT. We construct operations on higher algebraic K-groups induced by operations such as exterior power
on any suitable exact category, without appeal to the plus-construction of Quillen.

1. Results.
Let M be an exact category with a suitable notion of exterior power operations

M~ /\kM.

For example, we may take M to be the category P(X) of vector bundles on some scheme X. Or, we may
fix a group G and a commutative ring R and take M to be the category P(R,G) of representations of G on
projective finitely generated R-modules. One of the additional requirements is that we have a tensor product
functor which is compatible with the exterior power functors in a certain sense; the tensor product functor
is required to be bi-exact, and this prevents us from taking for M a category such as the category M(R) of
finitely generated R-modules.
I provide a construction of maps
A KM = KoM

induced by the exterior power operations which is based on the construction of K-theory presented in [1].

One may also consider a sequence of categories M,, for n > 0 with appropriate operations /\k M, =
M. For example, we may fix a commutative ring R, and consider the sequence P(R, S,,) of exact categories,
n > 0, where S, is the symmetric group. In this case we provide an analogous construction of maps

A KoM, = Ko Mo

The first K-groups and exterior power operations on them were invented by Grothendieck [3] for use in
proving Riemann-Roch theorems. Construction of analogous operations on the higher K-groups of Quillen
has been accomplished previously in certain cases: for the groups K, (R), with R a ring, by Quillen [4]
and Kratzer [5]; for the groups K,.(X) with X a regular noetherian scheme, by Soulé, using Brown-Gersten
generalized sheaf cohomology; and for K (X) when Y is a closed subscheme of a noetherian scheme X, by
Gillet-Soulé [2], in order to prove Serre’s conjecture on vanishing of intersection multiplicities. I haven’t yet
managed to prove the special A-ring properties for these operations, but I do give a proof that they agree
with the ones defined by Quillen and Kratzer for the K-groups of a ring R.

It was Henri Gillet who explained to me how the construction of [1] ought to lead to a construction of
these operations A\*, and it was with this goal in mind that we wrote the paper [1].

The techniques of [1] have been recently generalized by Thomas Gunnarson, Roland Schwénzl, Rainer
Vogt and Friedhelm Waldhausen in order to apply the techniques of this paper to the algebraic K-theory of
rings up to homotopy and the algebraic K-theory of spaces.

I am grateful to Friedhelm Waldhausen and Ulf Rehmann for their hospitality at the University of Bielefeld,
where the main part of this work was done.
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2. Introduction.
We give now a brief introduction to the problem of defining exterior power operations on K-groups.
Consider the Grothendieck group Ko(M) first. Given an exact sequence

0 U->W->X->0

one has the usual formula

(2.1) AW =S IANUIA %)

=0

One introduces the variable ¢t and defines a power series

x(W) =3 N WIE € KoM ).

i=0

The formula (2.1) can be collected for £ = 1,..., 00 into the single formula A¢(W) = A (U)A¢(X), which in
turn allows one to construct a group homomorphism

KoM — (1+t- KeM[[t]]) ™.

Taking the coefficient of t* defines a function A* : KoM — KoM. For a typical element [V] — [W] of KoM
the element A\*([V] — [W]) is the coefficient of t* in the power series quotient \;(V)/A;(W); the first few of
these are:

MV -W)=V-W
NV-W)=XV-V-W-NW+W -W
(2.2) NV -W) =XV -NV.-W-V W
—NBWH+V-W-W+XW-W
+W-NW-W-W-W

An important observation of Gillet is that if one writes down a similar formula for A¥(V — W), then the
number of terms is 2%, and there is a natural way to position the terms at the vertices of a k-dimensional
cube, in such a way that the signs associated to the terms at either end of any edge are opposite. To see
this, one can compute that

(2.3) v -ml= Y O AVIA W AW

atbr+eby=k

Here the sum runs over all ordered partitions a+by +---+b, = k with a > 0 and by,...,b, > 1. To generate
these partitions, consider all words of length k in the letters L and R. (It is even more revealing to use the
symbols A and ® in place of the letters L and R, respectively.) For each such word, we insert after each of
its letters a V or a W, the rule being that to the left of the first R we insert only V’s and to the right of
there, we insert only W’s. Next, delete all occurences of the letter L from the word. We let a be the number
of initial V’s and let b1,..., b, be the lengths of the subsequent runs of W’s. Such runs are initiated by the
letter R, so the number u of them is the number of R’s in the original word, and its parity gives the sign in
the formula.

A second observation is that for k¥ > 1 the operation A\* is definitely not a group homomorphism, for else
the formulas (2.1) and (2.2) would have just two terms.

Now recall that the K-groups are defined in terms of Quillen’s Q-construction by K;M = m;41|QM|, and
consider the question of whether one could define maps A\F on the higher K-groups by first constructing a map
M2 |QM| — |QM| of topological spaces. Any such map of spaces would certainly induce a homomorphism
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on 7 |QM| = KoM, and we know that A\F is not a homomorphism on Kj. Thus, this approach is doomed
to failure.

That is why all previous constructions of lambda operations are based on the plus-construction of Quillen,
where one has K;R = m; BG{(R)T for i > 1. Even if we modify the construction so that KR appears as
mo of the space, we don’t get into trouble; there is no reason that a map of spaces is required to induce a
homomorphism on 7y, even if my happens to be a group and the space happens to be an H-space. Never-
theless, approaching A-operations via the plus-construction is somewhat unsatisfactory because it divorces
the Grothendieck group from the other K-groups, and works only for K-groups of rings, or for K-groups
expressible in terms of K-groups of rings. In particular it does not work for the K-groups of an arbitrary
scheme.

In [1] Gillet and I provide an alternate definition for the K-groups of any exact category, K;(M) = m;GM,
which has the advantage that the Grothendieck group appears as 7y and yet is not divorced from the higher
K-groups. It is this definition which allows us to construct the lambda operations on the K-groups.

3. Review of the G-construction.
A simplicial set GM is defined in [1] for any exact category M, in such a way that K;(M) = m;GM.
It may be described loosely as follows. The vertices of GM are the pairs (M, N) of objects of M, and the
edges
(M, M)A (ar, N

are the triples (a, 3, 6) where
a: M — M
B:N'— N

are admissible monomorphisms, and
6 : ckrao——— ckr 8

is an isomorphism of the cokernels. The higher dimensional simplices are defined analogously, a k-simplex
being two admissible filtrations
Mo C M C---C My

NoCN; C---C Ny

together with compatible isomorphisms 6;; : M; /Mii>Nj /N;. It is an easy exercise to show, from this
description, that 7¢GM = Ko M.

In actuality, the precise definition of GM is formulated in a way that avoids introducing quotient con-
structions, as in Waldhausen’s work. We describe this now.

Let A denote the category of finite nonempty totally ordered sets. We let [n] denote the ordered set
{0<1<---<n}forn>0.

We introduce two new symbols L and R which will serve as elements of partially ordered sets about to be
constructed. They denote the words “Left” and “Right”. Given A € A we construct a partially ordered set
v(A) whose underlying set is the disjoint union {L, R} U A. We order it in such a way that A is a partially
ordered subset of y(A), but we also decree that L < a and R < a for each a € A. The elements L and R are
not comparable.

For j < in a partially ordered set we let i/j denote the arrow from j to i, regarding v(A) as a category
in the usual way. We let I'(A) denote the category of those arrows i/j in v(A) which have 7 € A. (Recall
that an arrow in an arrow category is simply a commutative square.) Notice that if A — B is an arrow of
A there is a natural functor I'(4) — I'(B). We call a functor M : T'(A) - M exact if the sequence

0> M(j/k) > M(i/k) — M(i/j) = 0

is exact for each k < j < i in y(A4) with 4,5 € A, and if also M (i/i) = 0 for each ¢ € A. (Here 0 denotes a
previously chosen zero object of M.)

In [1] we used the category of all arrows in v(A) for I'(A). Here we are omitting the two identity arrows
R/R and L/L from consideration, but in light of the axiom M (i/i) = 0 (which was also in effect in [1]), it
amounts to the same thing, as far as the exact functors from I'(4) to M are concerned.
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We define the value of the functor
GM : A°" — {sets}

on the object A to be the set GM(A) = Exact(I'(4), M) of exact functors I'(A) — M.

We have defined GM on the objects of A; on arrows one uses the evident composition.

If one applies this more precise definition to the sets A = [0] and A = [1] one recovers something equivalent
to the loose definition given above, except that the choice of object representing the cokernels has been added
to the data.

The G-construction can be iterated %k times, to provide a k-fold multisimplicial set we denote GFM =
G---GM. Tt is the functor

G*M : (A x---x A)°P — {sets}

defined on objects to be set
(G* M) (A4, ..., Ar) = Exact(T'(4;) x --- x T(4Ag), M)

of multiexact functors (exact in each variable separately). Notice that the vertices of G¥ M, i.e. the elements
of the set
(G*M)o,...0 = (G*M)([0], - - -, [0]),

are the same thing as 2F-tuples of objects of M. There is a homotopy equivalence |GM| = |G* M| in [1]
which has the effect, on KoM, of taking the alternating sum of the objects of the 2*-tuple.

All this tells us that we ought to expect A* to appear as a map from GM to G¥ M; this can’t be exactly
right, though, because GM is a simplicial set and G¥ M is a k-fold multisimplicial set. The next section
presents the solution to this problem.

4. Edgewise subdivision.
It turns out that to define A\* we need to introduce a simplicial subdivision especially adapted to the
situation. To see the necessity for this, consider a one-step filtration

vcw

in M. The most natural filtration on /\kW to consider is the k-step filtration which proves the formula
(2.1), namely

ANU=UAUA--AUAUC
UNUA---NUAW C
UNUN---ANWAW C

- C
UAWA---AWAW C

k
WAWNA--AWAW = \'W

(4.1)

An edge in GM is a bit more than a one-step filtration; it is actually a pair of one-step filtrations with an
isomorphism of the cokernels. Nevertheless, since /\]C converts one-step filtrations into k-step filtrations, one
may expect the map A\* to map a single edge onto a chain of k edges. To turn such a map into a simplicial
map, it is necessary to subdivide each edge of the domain of the map into a chain of £ edges. It turns out
that once this is done, our map can be described in a purely combinatorial fashion.

This “k-fold edge-wise subdivision”, which we are about to describe, has also been discovered indepen-
dently by Marcel Békstedt and Thomas Goodwillie. I discovered it for myself in 1985, but the definition was
completely forced by the desire to make exterior powers work.

Consider the concatenation functor

AF 5 A
(Al,AQ,...,Ak) l—)AlAQAk
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The concatenation A; A, --- Ay is the disjoint union of the ordered sets Ay, ..., Ay, ordered in such a way
that each A; is an ordered subset, together with the additional declaration that a < b for a € A; and b € A;
with ¢ < j.

If X is a simplicial set, then it is a functor X : A°P — {sets}, and composing it with concatenation yields
a functor

Suby X : (A¥)°P — {sets},

i.e. a k-fold multisimplicial set, which we call the k-fold edgewise subdivision.

Given an object A of A we let A(A) denote the standard simplex on A, namely the set of functions (not
necessarily order preserving) from A to the unit interval [0, 1] whose values sum to 1.

If Y is a k-fold multisimplicial set, we let |Y| denote the k-fold geometric realization. This is different
(but homeomorphic to) the geometric realization of the diagonal, as its cells are k-fold cartesian products of
standard simplices, and is the evident quotient of

TTY (A1, Ak) X A(A1) x -+ x A(A).

There is a map
B AAL) X X A(Ag) = A(A1 Ay - Ay)

defined for any a € A; --- Ay, by ¥(f1,..., fr)(a) = fi(a)/k where i is chosen so that a € A;. Letting X be
a simplicial set, we may assemble the maps

1X'¢X(A1Ak) XA(Al) X"'XA(Ak) —)X(A]_Ak) XA(A1A2"'Ak)

to get a continuous map
¥ : | Suby X| — | X|.

The map ¥ is a homeomorphism; we check this assertion by defining an inverse map ® to ¥. Given a point
P of | X| we represent it by some (z, f) € X(A) x A(A) for some A € A and consider for each a € A the

interval
L= [2 f(b),sz)] co.1].

b<a b<a

Pick subsets A; C A for each i with 1 <4 <k so that Ay < Ay <--- < Ag (in the sense that a < b whenever
a€ A;jand b€ Agy), and so that [“Z1, £] C U,eq, To- Let ¢ Ay ... Ax — A be the surjective map arising
from the various inclusions. Define functions f; : A; — [0, 1] according to the formula

fi(a) = k - length (Ia n [% %D .

We remark that Y-, , fi(a) = k-length [21, £] = 1,50 f; € A(4;). Finally we let ®(P) = (¢*, f1,. .., fr)-
One may check that ® : | X| — | Suby X| is a well-defined map, continuous, and an inverse to ¥.

Thus ¥ and ® are homeomorphisms, and this justifies calling Sub; X a subdivision of X.

One may easily see that this subdivision does to edges what we advertised earlier. Let’s use the notation
|g| to denote the cell in | X | arising from a simplex g of a simplicial set X. If g is an 1-simplex (in X ([1])) then
the image under ¥ of the edge |g| is the union of the edges |g;|, where g; € (SubxX)([0], ..., [0], [1],[0], - .,[0])
is the evident degeneracy of g. (Here the [1] occurs in the i-th spot.) Moreover, the starting point of |g;|
coincides with the ending point of |g; 1]

(42) .ﬂ).m....._ﬂ).ﬂ).

The illustration here should be compared with the filtration (4.1).
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5. The functor =.
For A € A we introduce a category (actually a partially ordered set) T'*(A). We will have T''(A) = T'(A).
We take for objects of T'*(A) those collections

a = (i1 /01, *2,02/l2, %3, . ., %1, ik /Lk)

where for each r we have

(A1) i € v(A), £, € v(A), and x, € {A,®},

(A2) ¢, <i,and i, € A,

(A3) if x, = Aand r > 1 then £,y = ¢, and i,_1 < i,
In particular, we see that each i, /¢, is an object of T'(A).

Given a pair a, o of objects of I'*(A), there will be an arrow from a — o' (and then there will be only
one) if for each r we have

(B1) i, <1,

(B2) ¢. </, and

(B3) if ¥, = A and #. = ® then 4, 1 < £..

Finally, we will call a sequence

o sa—a

exact if there exist integers r < s such that

n.,

n ! — I —
b, =Ly, =L, and x, = xp = *;

(C1) for any p with p < r or s < p we have i}, =i, = i, £,
(C2) for any p satisfying 7 < p < s we have %, = x, = x) = A, and i}, = i, = ij;
(C3) ¢, =0, <il =0l <il'! =i, %, = %, and *! = Q.

We introduce an elementary functor
= F(Al) X - X F(Ak) — Fk(Al . Ak)

defined by the formula
E@1/J1, -5 tk/gr) = @1/l %2, - oo %k, 00 [ Lr)
where we define /1 = j1, and then inductively for r > 1 we declare:
(D1) if j, = L then %, = A and £, = £,
(D2) if j, # L then %, = ® and £, = j,
One can check that = is a multi-exact functor (exact in each variable separately), and that = is natural in
each of the variables A;.

6. Proofs for the previous section.

We check first that ['*(A) is a category. Identity arrows exist. Given arrows a — o' — o' we see that
there is an arrow a — o' as follows.

(B1) i, <il < il

(B2) b, < b <.

(B3) Assuming *, = A and %!/ = ® we see that i,_1 < i\, < £ if /. = A, and that i,y < £ < £ if

* = Q®.

We check that Z(i1/j1,---,4ix/jx) is an object of T*(A; --- A}). Notice that £, € {L,R}UA; U---U A4,.

(A1) Clear.

(A3) ip—1 € Ay and i, € Ay, S0 Gp—1 < iy in Ap --- Ag.

(A2) If r =1 or jr # L then £, = j,. < i,. Otherwise £, = £p_1 < ip_1 < ip.

We check that = is a functor. Suppose we are given an arrow

(ir/g1s- - sin/d) = (@4/31 - - %/ k)-

We have the inequalities i, < ., j» < ji, jr < i, and j. < i) to work with, in checking that there is an
arrow

(i1/€17*27 .- -7*k77:r/er) — (1',1/6117*127 .- 7*2}77’;‘/61‘)
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(B1) Clear.

(B2) For r =1 it is clear. For r > 1 we prove it by induction, and there are three cases. In the case where
L < j,. we have £, = j,. < jl. = L. In the case where L = j,. = j/ we have £, = £,y < {,_, = {..
In the case where L = j, < j, we have £}, = j. € A, but £, =¢,_; € {L,R}UA U---UA,_4, s0
L < 0.

(B3) Assume *, = A and . = ®. Then L = j,. < j., so j. € A,, and we see that £, = j. > i,_1, because
tp_1 € {L,R} UATU---UA_1.

We check that = is exact in the r-th variable by applying it to a sequence

(iz/dr) = (ir/3r) = (i /37)
where j, = j; <. = j! <4 =i,. For p # r we write i, = i, = 4, and j;, = j, = j,. To prove that the
resulting sequence

(@500, %y o ooy ¥y in O = (in Oy, %y oy ¥y i [ 0r) — (8 [0 %Y, ¥ il 0

is exact we take s in the range r < s < k as large as possible so that j,41 = j.q42 = -+ = js = L. The
properties (C1), (C2), and most of (C3) are clear. To check that il = ¢! we observe that j! =i, € A,, so
j! # L, and thus (following (D2)) we have %! = ® and 0! = j!! =il.

7. The construction.
Suppose we have a sequence of exact categories M,, defined for n > 0. We assume we are given bi-exact
functors
®: Mp X Mp = Mpyp.
Let Fj(M) denote the category of chains V; — --- »— V), of admissible monomorphisms in the exact
category M, whose arrows are the evident commutative diagrams. We assume we are given exterior power
functors

Fy, (Mn) — Mk
Vim oo Ve VI A--- AV
We let /\kV denote V A --- AV, where the identity map is used for the monomorphism.
We assume the operations ® and A satisfy the following compatibility conditions:
(E1) Given V — ---— W — X » ---— Y there is a natural map

VA AWRXA-AY 2 VA---AWAXA---AY.

These maps are associative in the obvious sense.
(E2) Given V »— ---— W — X > ... Y there is a natural map
Y

X
VA AWAXA ANY - VA /\W®W/\ /\W

These maps are associative in the obvious sense. The abuse of notation occurring here through the
use of quotients is to be repaired by letting the condition apply to any choice of representatives for
the quotient objects X/W,...,Y/W.

(E3) GivenU - - = V=W ---— X — Y » .- — Z, the following diagram commutes.

UN---AVAWA---ANXQYAN---NZ —— UAN---AVAWA---AXAYAN---NZ

! !

UA /\V®W/\ /\X®Y/\ /\Z—>U/\ /\V®W/\ /\X/\Y/\ /\Z
v vV oV \% v vV Vv v

(E4) GivenU »— - —» VW ---— X — Y »> .- Z, the following diagram commutes.

UN--AVOIWA---ANXAYAN--NZ —— UA---AVAWA---AXAYA---NZ

! !

Y Z Y
UAAVEWAAX® LA A —— UNAVAWA AKX QLA A
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(E5) GivenU — --- = V> W' —» W — X — ... — Y the sequence

O=2UA- - AVAWAXA---AY SUA---AVAWAXA---AY

X Y

is an exact sequence.
We define a function (for each A € A)

/\Ic : Exact(T'(A), M,,) = Exact(T¥(A4), M)

as follows. Given M € Exact(T'(A), M,,) and given (i1/f1,*a,...,%k,ix/lx) € T¥(A) we define the functor
A"M on objects with the formula

k
(/\ M)(’L'l/gl,*g,...,*k,ik/gk) = M(Zl/gl) ko vt Xp M(Zk/fk)

Property (A3) ensures that £, _; = £, whenever . = A, and thus the use of multiwedges is permissible (i.e. we
are actually applying the multiwedge to a filtration). Properties (E1)-(E4) ensure that the obvious approach
to defining /\kM on arrows yields a well-defined functor, and property (E5), together with exactness of M
and ®, ensures that /\kM is exact. We see that /\k is natural in the variable A.

If we replace A by a concatenation A; --- Ay and follow /\lc by composition with = we get a natural

function
N - Exact(T(Ay --- Ag), M,) = Exact(T'(A1) x - x T(4z), Mux)

which is nothing more than a simplicial map

AF 1 Suby GMy = GF Moy
whose geometric realization gives up the desired map

MK (My) = Ko(Mag)

8. Agreement on K.

To compute what happens on KoM we consider a vertex (V,W) of GM,,, i.e. a functor N : I'([0]) - M
defined by N(0/L) =V and N(0/R) = W. In the subdivision Suby(GM,,) this corresponds to the (0, ...,0)-
simplex M defined by M(0,/L) =V, M(0,/R) = W, and M(0,/0,) = 0, for 1 < r < s < k. Here 0,
denotes the 0 of the r-th [0] in the concatenation [0]---[0]. (The precise statement is that the subdivision
homeomorphism ¥ of section 4 sends M to a certain k-fold degeneracy of N.)

To compute the (0,...,0)-simplex \*(V,W) = \¥M of G¥ M, we take any ji,...,jr € {L,R} and
examine

(MM (0/41,---,0/4k) = M (01 /1) %o - -+ %, M(0,./£,)

Here ¢; and *; are defined as in (D1,2) above, namely: if j. = L then %, = A and £, = ¢,_1, but if j, = R
then x, = ® and ¢, = R. It is apparent that if, for any r, we have j,. = R, then for all s > r we have /; = R.
Thus the sequence /¢4, ..., £, consists of some L’s followed by some R’s. If we let u denote the number of j’s
which are equal to R, then we see that (\*M)(0/j1,...,0/j%) has the form

/\aV®/\b1W®---®/\b"W.

As the indices j1,. .., jx take all 2¥ possible combinations of values from the set {L, R}, we obtain all possible
ordered partitions a + by + -+ + b, = k with a > 0 and by, ..., b, > 1; there are 2* of these.

Taking the alternating sum in KoM yields A*¥([V] — [W]), according to the formula (2.3). This proves
agreement on K for our operations with the those discussed in section 2.
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9. Agreement with the operations on K,R.

Let R be a commutative ring, and let M = P(R). Quillen [4] and Kratzer [5] have defined A-operations
A K. (R) = K.(R). In this section we check that our construction agrees with theirs.

If C is a category and n is a positive integer, we introduce a k-fold category Multi,, C by setting

(Multiy, C)(Ay,. .., Ap) = C(Ay x -+ x Ap).

We remark that Multis C was called bi(C) in [6, p. 168]. It can be checked that |C| and |Multi, C| are
homotopy equivalent, although we will not actually use this fact.
If C is a category we let Iso(C) denote the subcategory of C whose arrows are the isomorphisms of C.
Consider the sub-k-fold-simplicial-set IG¥ M of G¥ M whose simplices are those where the admissible
monomorphisms in the filtrations are isomorphisms, or equivalently, are those multiexact functors M €
(GFM)(Ay, ..., Ag) such that M (i1 /j1,---,ix/jx) = O whenever j. ¢ {L, R} for some r. By forgetting the
superfluous zero values of the functors M we see that

(IGFM)(Ay, ..., Ay) = Hom((A; x {L,R}) x --- x (A}, x {L, R}),Tso M)
= Hom(A4; x --- X Ak,IsoM{L’R}k)
= (Multiz Iso MIZBY) (4, ... Ap)

and thus IG* M is nothing more that a product of 2¥ copies of Multiy Iso M. A path in IG¥ M can be
written as an alternating sum of 2¥ paths, each of which has all but one of its 2 components being the
constant path at the basepoint 0. Each term of the sum can then be thought of as a path in Multi Iso M.
Now the edges of | Multiy, Iso M| are of k different types, depending on their “direction” : an edge in the i-th
direction is a 0,...,0,1,0,...,0-simplex, where the 1 occurs in the i-th spot. But commutative squares like

show that, for a given arrow f of C, the edges of | Multij Iso M| formed from f in the k directions are all
homotopic. We make use of this remark implicitly in what follows.

We remark that our map A\* maps IGM to IG¥ M.

Consider an arbitrary group H and a virtual representation p of H on finitely generated projective R-
modules. From p we may obtain a homotopy class of maps |p| : |[H| = |GM|. One way to do this is to
represent p as a difference [V] — [W] of representations and use the map H — IGM which sends h to the
pair (hjv,hjw). We can do something similar with an alternating sum of 2* representations and |G¥ M|,
because any map H — IG* M is an alternating sum of maps for the H-space structure on |G¥ M|, as can
be seen by picking out the 2¥ components of the map.

Making use of the A-operations in Ko(P(R, H)) we obtain another virtual representation A\¥p. An exam-
ination of the construction in [4] and [5] tells us it is enough to check that the diagram

\H| —2 |6M|

| e

|H| —— |GM|
[Xkp|

commutes up to homotopy.

Let (V,W) represent p as before. In the previous section we checked that we get the right result on the
underlying R-modules, which means that |A\¥| o |p| and |A\¥p| and can be written in a parallel fashion as an
alternating sum of 2% terms, one of which we single out by selecting (ji, - .-, jx) € {L, R}*. Now it suffices to
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examine a single element h of H, since a homotopy class of maps from a space to the geometric realization
of a groupoid is determined by where it sends the base point and the loops. The edge p(h) in GM is the
exact functor M : I'([1]) - M determined by

MO/L)=V
M(1/L)=V

M(0/L - 1/L) = (V%)V)
M(O/R) =W
M(1/R) =W

M(0/R = 1/R) = (W——W)

Our computation implicitly involves applying the subdivision homeomorphism @ of section 4, for we have
written |GM| in place of | Suby GM| in the upper right corner. After referring to the diagram (4.2) and
the discussion surrounding it, one eventually sees that the homotopy of loops we desire results from the fact
that the composite of the maps

M(O/]l) *9 M(O/Jz) *3 ... Kkp_q M(O/]k_l) X M(O/]k)
— M(O/]l) *9 M(O/jg) X3 st kp_q M(O/]k_l) *p M(l/]k)
- ...
= M(0/j1) *2 M(1/j2) *5 + - - *p—1 M(1/jk—1) *x M(1/ji)
— M(1/j1) *2 M(1/j2) *3 - - - %k—1 M(1/jr—1) % M(1/jr),

is the map induced on M (0/j1) *2 M (0/ja) *3 - - - *_1 M(0/jx—1) *x M (0/j) by h.

10. Examples.

For our first example we take a scheme X and let M,, = P(X) (for each n > 0). For V@ W we take the
usual tensor product, and given admissible monomorphisms V; C --- C Vj, we take V3 A--- AV}, to be the
image of V; ® - -- ® V}, in A*¥V}. The latter could also be defined locally as the quotient of Vi ® --- ® V; by
the submodule generated by all elements of the form v; ® - - - ® vy, with v; = v;41 for some ¢, and this point
of view helps check the properties required.

For our second example we take a commutative ring R and let M,, = P(R,G) (for each n > 0). For ®
and A we take the operations over R (as described in the first example) and let the group G act diagonally.

For our third example we take a commutative ring R and let M,, = P(R,S,) as in the introduction.
We define our two operations as follows. Given V € M, and W € M, we let V ® W be the induced

representation Ind?:;”s}, VerW. Given V; C--- CV; in M, we let

Vi A "'/\Vk = Indg:kfsk Z Vf(l) QRr-"-OR Vf(k)
fESk

where the sum is understood to be taken as a submodule of V; Qg -+ Qg Vj.
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