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ADAMS OPERATIONS ON HIGHER K-THEORY

Daniel R. Grayson

University of Illinois at Urbana-Champaign

Abstract. We construct Adams operations on higher algebraic K-groups induced by oper-
ations such as symmetric powers on any suitable exact category, by constructing an explicit
map of spaces, combinatorially defined. The map uses the S-construction of Waldhausen,
and deloops (once) earlier constructions of the map.

1. Introduction.
Let P be an exact category with a suitable notion of tensor product M ⊗N , symmetric

power SkM , and exterior power ΛkM . For example, we may take P to be the category
P(X) of vector bundles on some scheme X. Or we may take P to be the category P(R) of
finitely generated projective R-modules, where R is a commutative ring. Or we may fix a
group Γ and a commutative ringR and take P to be the category P(R,Γ) of representations
of Γ on projective finitely generated R-modules. We impose certain exactness requirements
on these functors, so that in particular the tensor product is required to be bi-exact, and
this prevents us from taking for P a category such as the category M(R) of finitely
generated R-modules.

In a previous paper [5] I showed how to use the exterior power operations on modules
to construct the lambda operations λk on the higher K-groups as a map of spaces λk :
|GP| → |GkP| in a combinatorial fashion. Here the simplicial set GP, due to Gillet and
me [3], provides an alternate definition for the K-groups of any exact category, KiP =
πiGP, which has the advantage that the Grothendieck group appears as π0 and is not
divorced from the higher K-groups. The Q-construction of Quillen and the S-construction
of Waldhausen are the original definitions for the K-groups of P, but involve a shift in
degree, so that Ki(P) = πi+1|S.P| = πi+1|QP|; since the lambda operations are not
additive on K0, but any function on π1 arising from a map would be a homomorphism,
neither of these two spaces could be used to define lambda operations combinatorially.

The Adams operation ψk is derived from the lambda operation λk by a natural procedure
which makes ψk additive on K0. Thus there is no apparent obstruction to the presence
of a combinatorial description for ψk that involves |S.P| or |QP|. The purpose of this
paper is to present such a combinatorial construction of the Adams operation as a map of
spaces ψk : |S.P| → |S.G̃(k)P|. The map works by considering symmetric powers of acyclic
complexes of length one, and by introducing a sort of symmetric product of the members
of a filtration of acyclic complexes. The map is a delooping of the Adams operation map
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derivable from the lambda operation maps. I don’t know whether further delooping is
possible without inverting some integers, and I suspect that this one-fold delooping is new,
even on the level of Z × BU . (One may refer to [12] for methods that can be used to
transfer these results to topological K-theory.)

The construction G̃(k) appearing in the target of the map is a (k − 1)-dimensional
cube of exact categories, each of which involves acyclic complexes of length k as well as
total complexes of multi-dimensional complexes that are acyclic in two directions. It is
arranged so that the target of the map is yet another space whose homotopy groups are the
K-groups, and, in fact, there is a natural, combinatorially defined, homotopy equivalence
|S.P| → |S.G̃(k)P|.

In [13] Schechtmann gives a construction of operations analogous to the one I present
here, but it yields a homotopy class of maps rather than a single explicit map; at the
expense of tensoring with the rational numbers, he shows that the Adams operations are
infinite loop maps, whereas we deloop only once in this paper. Alexander Nenashev will
write a paper in which he constructs lambda operations based on techniques in [5], but
using long exact sequences instead of cubes, as suggested in [3]. For other discussions of
lambda-operations and Adams operations on algebraic K-theory, the reader may wish to
refer to [7], [8], [9], [4], and [10].

I thank Henri Gillet for useful discussions and the idea of using the secondary Euler
characteristic. I thank David Benson for the definition of the symmetric power of a complex
that I use; the one I was originally using was based on the theory of non-additive derived
functors of Dold and Puppe, [2]. I thank Pierre Deligne and Jens Franke, who explained to
me that it ought to be possible to realize the eigenspaces of the Adams operations on the
rational K-groups as the rational homotopy groups of spaces; perhaps the construction of
this paper is a step in that direction, and thus might help analyze the relationship between
K-theory and motivic cohomology.

2. Symmetric powers of complexes and symmetric products of filtered com-
plexes.

We will write about finitely generated projective R-modules for convenience of exposi-
tion below, but it will be apparent that any of the constructions we use will work equally
well for locally free sheaves of finite type (vector bundles) on a scheme X, or for represen-
tations of a group G in finitely generated projective R modules. All tensor products will
be over R.

If R is a commutative ring and M is an R-module, then the k-th symmetric power SkM
of M is defined to be the quotient of M⊗k by the relations

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xk.

Similarly, the k-th exterior power ΛkM of M is defined to be the quotient of M⊗k by the
relations

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ −x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xk.

and
x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ 0
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if xi = xi+1. The first of these two relations follows easily from the second.
Now letM be a Z-gradedR-module, (or even a Z/2Z-gradedR-module). If x ∈Mp, then

we say that x is a homogeneous element ofM and that deg x = p. We may mix the relations
for symmetric and exterior powers mentioned above, and define the k-th symmetric power
SkM of M to be the quotient of M⊗k by the relations among homogeneous elements xi
of M ,

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ (−1)deg xi·deg xi+1x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xk,

and

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ 0

whenever xi = xi+1 and deg xi is odd. We let x1 · x2 · . . . · xk denote the image in SkM of
x1 ⊗ · · · ⊗ xk.

If M is concentrated in even degrees, then SkM is the k-th symmetric power of the
underlying module, and ifM is concentrated in odd degrees, then SkM is the k-th exterior
power.

The module SkM is itself a graded module, with

deg(x1 · . . . · xk) = deg x1 + · · ·+ deg xk

If the graded module M is free, (which we take to mean that each component Mp is
free), then we may take a basis {ej} for it that consists of homogeneous elements. We say
that a tensor product ei1 ⊗ · · · ⊗ eik or its image ei1 · . . . · eik in SkM is a monomial. We
may write SkM as the quotient of M⊗k by the following monomial relations:

ej1 ⊗ · · · ⊗ eji ⊗ eji+1 ⊗ · · · ⊗ ejk ∼ (−1)deg eji ·deg eji+1ej1 ⊗ · · · ⊗ eji+1 ⊗ eji ⊗ · · · ⊗ ejk ,

and

ej1 ⊗ · · · ⊗ eji ⊗ eji+1 ⊗ · · · ⊗ ejk ∼ 0

whenever eji = eji+1 and deg eji is odd. Repeated application of the first of these types of
relations to a monomial will accumulate a sign which is the sign of the permutation affecting
the factors of odd degree; if we are ever led thereby to a relation of form ej1 · . . . · ejk ∼
−ej1 · . . . ·ejk , then we must have a repeated factor of odd degree, so that ej1 · . . . ·ejk ∼ 0 is
a consequence of the second relation. These remarks make it clear that sorting the factors
in a monomial modulo the two relations is a well-defined operation, so that SkM is a free
R-module, with a basis consisting of those monomials ej1 · . . . · ejk such that j1 ≤ · · · ≤ jk,
and ji = ji+1 only if deg eji is even.

Now suppose that M is a chain complex of R-modules, so it is a Z-graded module with
a differential d of degree −1. We define a differential d on M⊗k by means of the usual
Leibniz rule

d(x1 ⊗ · · · ⊗ xk) =
k∑
i=1

(−1)deg x1+···+deg xi−1x1 ⊗ · · · ⊗ dxi ⊗ · · · ⊗ xk
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and observe that this respects the relations defining the quotient SkM , thereby defining a
differential on SkM and making it into a chain complex.

An important special case arises whenM is the mapping cone CN = C1N of the identity
map on a finitely generated projective R-module N , so that M is an acyclic chain complex
of length 1, with a copy of N in degrees 0 and 1. In this case one sees that SkCN is the
usual Koszul complex of N , in which (SkM)p = Sk−pM0 ⊗ ΛpM1 = Sk−pN ⊗ ΛpN . It
is known [1, p. 528] that the Koszul complex SkCN is acyclic when k > 0, and is the
ring R concentrated in degree 0 when k = 0; a simple proof can be given based on the
multilinearity property below (2.1), by induction on k and the rank of N .

We remark that if M is an acyclic free complex concentrated in degrees 1 and 2, then
SkM is not in general acyclic. For example, with k = 2, one gets a complex S2N →
N ⊗N → Λ2N which fails to be exact in the middle because of elements like x⊗ x which
are not hit.

We proceed now to the next generalization. We will overload the subscript notation a
bit, and use subscripts to denote both the members of a filtration and the components of
a graded module. Let M be a filtered complex with k steps, so that we have complexes
M1 ⊆ · · · ⊆ Mk = M . If we need it, we will refer to the degree p component of the
complex Mi as Mip. We define the symmetric product M1 · . . . ·Mk of M to be the image
of M1 ⊗ · · · ⊗Mk in SkMk.

We will always assume that M is an admissible filtered complex of finitely generated
projective R-modules, so that every module Mip in it is a finitely generated projective
module, and so that each inclusion Mi−1,p ⊆ Mip is admissible in the sense that its
cokernel is projective. We say that M is free if every Mip is free, and every quotient
Mip/Mi−1,p is free. A basis for a free admissible filtered complex M will be a collection
of bases for each Mip that are upward compatible, and thus induce bases on the quotients
Mip/Mi−1,p. We remark that an admissible filtered complex M is locally free.

The symmetric product of an admissible filtered complex M can also be defined by gen-
erators and relations (and this might be a preferable definition when M is not admissible,
or does not consist of projective modules). It is the quotient of M1 ⊗ · · · ⊗Mk by those
relations used before where the i-th factor in the tensor is required to lie in Mi. To be
precise, the relations among tensor products of homogeneous elements xi of M are

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ (−1)deg xi·deg xi+1x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xk

whenever xj ∈Mj for all j, and moreover xi+1 ∈Mi, and

x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xk ∼ 0

whenever xj ∈ Mj for all j, xi = xi+1 and deg xi is odd. To prove this assertion, we may
localize sufficiently to ensure that M is free, and then we may pick a basis {ej} for M and
order it in such a way that the basis elements for M1 come first, and then come some more
elements to complete a basis for M2, and so on. The relations mentioned suffice to sort
the factors of any monomial drawn from M1 ⊗ · · · ⊗Mk, and allow us to write down an
explicit basis for the quotient, consisting of those monomials ej1 ⊗· · ·⊗ejk where eji ∈Mi

for each i, j1 ≤ · · · ≤ jk, and ji = ji+1 only if deg eji is even. Since these monomials are a
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subset of the monomials that serve as basis for SkMk, and are the same monomials that
span the image of M1 ⊗ · · · ⊗Mk in SkMk, we have proved our assertion.

The main fact about symmetric products of admissible filtered complexes governs what
happens when one of the terms in the filtration is perturbed slightly, and is a property we
will call multilinearity. Suppose M is an admissible filtered complex, and suppose M ′j+1

is an alternative for the step Mj+1 in the filtration M , which we take to mean that

M1 ⊆ · · · ⊆Mj ⊆M
′
j+1 ⊆Mj+1 ⊆ · · · ⊆Mk

is an admissible filtrations of complexes. By localizing sufficiently to make everything free,
one sees that M1 · . . . ·M ′j+1 · . . .·Mk is an admissible subcomplex of M1 · . . . ·Mj+1 · . . . ·Mk.
The multilinearity property identifies the quotient via a certain natural isomorphism:

(2.1)
M1 · . . . ·Mj+1 · . . . ·Mk

M1 · . . . ·M ′j+1 · . . . ·Mk

∼=
(
M1 · . . . ·Mj

)
⊗
(Mj+1

M ′j+1

· . . . ·
Mk

M ′j+1

)
.

Indeed, both sides of this isomorphism are quotients of M1 ⊗ · · · ⊗Mk by various explicit
relations, and all one has to do is to check that the two sets of relations are equivalent; this
can be done. Another way is to localize sufficiently so that all the everything is free, pick
an ordered basis {ej} for M compatible with the filtration as we did above, and observe
that the same set of monomials gives a basis for both sides.

Here is an important corollary of the multilinearity of symmetric products. Suppose
M is an acyclic admissible filtered complex of length 1, which we take to mean that (in
addition to begin admissible) each step Mi in the filtration is an acyclic complex of length
1. I claim that the symmetric product M1 · . . . ·Mk is an acyclic complex. The proof goes
by induction on k; making use of multilinearity and the fact that a tensor product of two
acyclic complexes is acyclic allows us to modify M2, . . . ,Mk successively so that they all
equal M1, reducing us to the previously mentioned result about Koszul complexes being
acyclic.

Here is an example of the symmetric product. In the case where k = 2 and M = CN
is the mapping cone of a admissible filtered module N1 ⊆ N2 we find that M1 ·M2 is the
acyclic complex

0→ N1 ∧N2 → (N1 ⊗N2) + (N2 ⊗N1)→ N1 ·N2 → 0

which sits as an admissible subcomplex of the Koszul complex of N2:

0→ Λ2N2 → N2 ⊗N2 → S2N2 → 0.

Here we use N1 ∧N2 to denote the image of N1 ⊗N2 in Λ2N2, and N1 ·N2 to denote the
image of N1 ⊗N2 in S2N2.

We have seen that the symmetric product of an admissible filtered acyclic complex of
length one is a natural generalization of the Koszul complex. There is another conceivable
generalization of the Koszul complex that also turns out to be acyclic, but which we do
not need in the sequel; uninterested readers may skip to the beginning of the next section
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now. For an admissible filtration N1 ⊆ · · · ⊆ Nk of finitely generated projective modules
it looks like

0→ ΛkN1 → · · · → N1 · . . . ·Nk−p ⊗ ΛpNk−p+1 → · · · → N1 · . . . ·Nk → 0.

It can be constructed from the symmetric product CN1 ·. . .·CNk by an interesting pruning
procedure, which I describe now.

Suppose that a complex M of length k has a filtration 0 = M−1 ⊆ · · · ⊆ Mk = M
with the property that each quotient Mp/Mp−1 is a complex of length p whose homology

vanishes except in degree p. A new complex M̃ , also of length k, can be defined by
setting M̃p = Hp(Mp/Mp−1). A straightforward diagram chase defines the differentials

in M̃ , shows that M̃ is a complex, constructs a map M̃ → M , and shows that the map
M̃ →M is a quasi-isomorphism. (This is related to the way that the skeletal filtration of
a cell-complex leads to the complex of cellular chains from the complex of singular chains.)
Instead of doing the diagram chase, one could regard the spectral sequence associated to
M , and take M̃ to be the nonvanishing row of the E1 term. We say that M̃ is obtained
from M by pruning.

We may prune the symmetric product W = CN1 · . . . · CNk by means of the filtration
whose p-th step is Wp = N1 · . . . ·Nk−p ·CNk−p+1 · . . . ·CNk. Here we regard each module
Ni as a complex by concentrating it in degree 0; in this way it is a subcomplex of CNi.
By multilinearity (2.1) the quotient Wp/Wp−1 is

N1 · . . . ·Nk−p ⊗
CNk−p+1

Nk−p+1
· . . . ·

CNk
Nk−p+1

.

We may modify the latter complex so that Nk−p+2, . . . , Nk are successively replaced by
Nk−p+1, without changing the quasi-isomorphism class, by using the multilinearity prop-
erty with the acyclicity of complexes of the form

CN`+1

CN`
· . . . ·

CNk
CN`

.

The result, after the modifications, is

N1 · . . . ·Nk−p ⊗
CNk−p+1

Nk−p+1
· . . . ·

CNk−p+1

Nk−p+1
= N1 · . . . ·Nk−p ⊗ ΛpNk−p+1[−p].

We conclude that Wp/Wp−1 has homology only in degree p, and that pruning W leads to
the complex announced above.

3. The Adams operation as the secondary Euler characteristic of the Koszul
complex.

Use the symbol [N ] to denote the class of a finitely generated projective R-module N
in the Grothendieck group K0R, or the class of a vector bundle N on a scheme X in the
Grothendieck group K0X. All complexes below will be bounded chain complexes. Let M
be a complex of finitely generated projective R-modules with differential dp : Mp+1 →Mp,
and recall the Euler characteristic χ(M) =

∑
p(−1)p[Mp]. If M is acyclic, then χ(M) = 0,



ADAMS OPERATIONS ON HIGHER K-THEORY 7

and the secondary Euler characteristic may be defined as χ′(M) =
∑
p(−1)p+1p[Mp] or as

χ′(M) =
∑
p(−1)p[im dp]. If 0→M ′ →M →M ′′ → 0 is a short exact sequence of acyclic

complexes, then χ′(M) = χ′(M ′) + χ′(M ′′).
We say that a bicomplex is doubly acyclic if each row and each column are acyclic. The

tensor product of two acyclic complexes of projective modules (regarded as a bicomplex)
is doubly acyclic. If M is a doubly acyclic bicomplex, and TotM is its total complex, then
χ′(TotM) = 0; one proves this by considering the filtration on TotM arising from the
canonical filtration with respect to the columns and using the additivity of χ′ to show that
χ′(TotM) is the alternating sum of χ′ of the columns of M , which is then zero because
the columns of M fit into a long exact sequence. Even more is true: if d = d′ + d′′ is
the differential on TotM , where d′ and d′′ are the horizontal and vertical differentials on
M , then the projective modules im dp may be assembled into an acyclic complex by using
the maps induced by d′ (or by d′′) as differential. The proof (for the ring case) goes by
filtering M in both directions in such a way that the successive quotients are doubly acyclic
bicomplexes of size 1 by 1, in which case the statement can be checked easily.

Let ψk denote the k-th Adams operation on K0R or K0X. I claim that for any N as
above the following formula holds.

(3.1) ψk[N ] = χ′(SkCN)

We prove this by verifying, for the right hand side of the equation, the two properties
that (according to the splitting principle) characterize ψk. Firstly, when rankN = 1 the
Koszul complex SkCN is just C(N⊗k), so χ′(SkCN) = N⊗k. Secondly, if 0 → N ′ →
N → N ′′ → 0 is a short exact sequence, then we can verify the additivity χ′(SkCN) =
χ′(SkCN ′)+χ′(SkCN ′′) of the right hand side by making use of multilinearity (2.1). From
the filtration

SkCN ′ = CN ′ · . . . ·CN ′ · CN ′

⊆ CN ′ · . . . ·CN ′ · CN

⊆ CN ′ · . . . ·CN · CN ⊆ . . .

⊆ CN · . . . ·CN · CN = SkCN

we deduce that

χ′(SkCN) = χ′(SkCN ′′) + χ′(SkCN ′) +
k−1∑
i=1

χ′(SiCN ′′ ⊗ Sk−iCN ′)

= χ′(SkCN ′′) + χ′(SkCN ′).

The cross-terms drop out because the secondary Euler characteristic of a tensor product
of acyclic complexes is zero.

As an example, we may compute ψ2[N ]. In this case, the complex S2CN is 0→ Λ2N →
N ⊗N → S2N → 0, and χ′(S2CN) = [S2N ]− [Λ2N ].

If we let LkpN denote the image of dp in the Koszul complex SkCN . The functor LkpN
is the Schur functor corresponding to the Young diagram (k − p, 1, . . . , 1) of hook type.
We see that ψk[N ] =

∑
(−1)p[LpN ].
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We remark that formula (3.1) is like the nonstandard definition of the differential of a
C∞-map f : M → N of manifolds. If we think of M and N as being embedded manifolds
containing the origin, the differential of f at the origin can be written as (df)0(v) =
standard part of

(
1
ε
f(εv)

)
, where v is a vector tangent to M at 0, and ε is an infinitesimal

number. Comparing with (3.1) we see that multiplication of v by ε is analogous to forming
the mapping cone of the identity map onN . This suggests that we regard acyclic complexes
as being infinitesimal in size when compared to arbitrary complexes, and that we regard
the category of complexes as being an enlargement of the category of modules. We also
see that the final step of dividing by ε and taking the standard part is analogous to taking
the secondary Euler characteristic of an acyclic complex. The fact that terms in the
expansion of f(εv) involving ε2 drop out when we divide by ε and take the standard part
corresponds to the fact that doubly acyclic complexes yield 0 when we take the secondary
Euler characteristic, and the two facts arise in the same way in the proof of additivity. This
suggests that we regard doubly acyclic complexes as being doubly infinitesimal in size when
compared to arbitrary complexes. It also suggests that we regard the Adams operation ψk

as being the differential of the functor N 7→ SkN from the category of finitely generated
projective modules to itself; the differential is formed by first extending the domain of
the functor from modules to complexes of modules, which is somehow analogous to first
extending the domain of f from M to a nonstandard model of M .

4. The multi-relative S.-construction.
We let [1] denote the ordered set {0 < 1} regarded as a category. By an n-dimensional

cube M of (exact) categories we will mean a functor from [1]n to the category of (exact)
categories.

In this section we show how, given an n-dimensional cubeM of exact categories, we may
construct a certain n-fold multisimplicial exact category called CM to serve as the mapping
cone of the cube. In the case n = 1, it will be the same as a construction of Waldhausen
[15, p. 343] denoted S.(M0 → M1); in [14, p. 182–184] the same construction is called
F.(M0 →M1).

IfM andM′ are n-dimensional cubes of exact categories, we let Exact(M,M′) denote
the set of natural transformationsM→M′.

If M is an exact category, we let [M] denote the corresponding 0-dimensional cube of
exact categories. We will often simply identify M with [M].

Given n-dimensional cubes M and M′ of exact categories, and an exact functor g ∈
Exact(M,M′), we may assemble M′ and M into an n + 1-dimensional cube of exact
categories; we will use the symbol [M′ → M] to denote it. We will also use square
brackets enclosing a commutative square of n-dimensional cubes of exact categories to
denote the corresponding n+ 2 dimensional cube.

If M is an n-dimensional cube of categories and M′ is an n′-dimensional cube of cat-
egories, then we let M �M′ denote the evident n + n′-dimensional cube of categories
defined by

(M�M′)(ε1, . . . , εn+n′) =M(ε1, . . . , εn)×M
′(εn+1, . . . , εn+n′).

We let ∆ denote the category of finite nonempty totally ordered sets. If C is a category,
let Ar(C) denote the category of arrows in C, where an arrow in this category is a commu-
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tative square. If A is an ordered set regarded as a category, we will use j/i to denote the
arrow from i to j in A, if i ≤ j.

Given an exact category M with a chosen zero object 0 and an ordered set A, we call
a functor F : Ar(A) → M exact if F (i/i) = 0 for all i, and 0 → F (j/i) → F (k/i) →
F (k/j) → 0 is exact for all i ≤ j ≤ k. The set of such exact functors is denoted by
Exact(Ar(A),M). Given ordered sets A1, . . . , An, we let Exact(Ar(A1)×· · ·×Ar(An),M)
denote the set of multi-exact functors, i.e., functors that are exact in each variable.

Given A,B ∈ ∆ let AB denote the totally ordered set constructed from A and B by
concatenation, i.e., as the disjoint union of A and B with every element of A declared to
be less than every element of B.

Now let L be a symbol, and consider {L} to be an ordered set. Given an n-dimensional
cube of exact categories M, we define an n-fold multisimplicial exact category CM as a
functor from (∆n)op to the category of exact categories by letting CM(A1, . . . , An) be the
set

Exact([Ar(A1)→ Ar({L}A1)]� · · ·� [Ar(An)→ Ar({L}An)],M)

of multi-exact natural transformations. When n = 0, we may identify CM with M.
We define S.M to be S.CM, the result of applying the S. construction of Waldhausen
degreewise. The construction S.M is a n+1-fold multisimplicial set; to make that explicit
we write the new argument to the left of the other ones, and see that

S.M(A0, A1, . . . , An) = Exact([Ar(A0)]�[Ar(A1)→ Ar({L}A1)]�· · ·�[Ar(An)→ Ar({L}An)],M)

for A0, . . . , An ∈ ∆.

Lemma 4.1. Suppose we are given M′ →M as above.
(a) There is a fibration sequence S.[0→M]→ S.[M′ →M]→ S.[M′ → 0].
(b) In the case where g is the identity map, the space S.[M→M] is contractible.
(c) S.[0→M] is homotopy equivalent to S.M.
(d) S.[M→ 0] is a delooping of S.M.
(a) There is a fibration sequence S.M′ → S.M→ S.[M′ →M].

Proof. One uses the additivity theorem of Waldhausen, just as in [15, p. 343] or [14, p.
182–184]. �

We remark that if
R −−−−→ Sy y
T −−−−→ U

is a square of commutative rings, then tensor product of projective modules leads imme-
diately to a map

|S.[P(R)→ P(S)]| ∧ |S.[P(R)→ P(T )]| →

∣∣∣∣∣∣∣∣S.S.

P(R) −−−−→ P(S)y y
P(T ) −−−−→ P(U)


∣∣∣∣∣∣∣∣

which can be used to define products on relative K-groups.
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5. The construction of the Adams operations.
For the construction of the Adams operation Ψk on the K-groups of an exact category

P we will need to consider k-dimensional multi-complexes N of length one in each direc-
tion, and to take total complexes of them in a certain partial way. These “partial” total
complexes will have fewer dimensions than N has, and their lengths will be greater; the
“total” total complex of N will be of dimension 1 and length k.

We describe now what sort of “partial” total complexes we have in mind.
An equivalence relation ϕ on a totally ordered set A ∈ ∆ is compatible with the ordering

if the quotient set A/ϕ inherits an ordering from A so that the quotient map is order-
preserving. If we denote the equivalence classes by A1, . . . , At, then we may write A as
the concatenation A = A1A2 · · ·At, and the quotient A/ϕ as the ordered set A/ϕ =
{A1, . . . , At}.

Let N be a multi-complex whose directions are indexed by the elements of A. We
assume that the differentials anti-commute with each other, i.e., ∂i∂j + ∂j∂i = 0 ; this
ensures that when taking total complexes, the sum of the differentials immediately provides
a differential. A homogeneous element x ∈ N has a multi-degree p : A → Z which is a
sequence of integers indexed by the set A, and we let Np denote the set of homogeneous
elements of N of multi-degree p, together with 0. Define B = A/ϕ, and let π : A → B
be the quotient map. We may define a multi-complex N ′ = TotϕN whose directions are
indexed by B by specifying π∗p = q : B → Z, the degree of x as an element of N ′. It will
be given by the formula q(b) =

∑
a∈ϕ−1(b)

p(a). This corresponds to setting

N ′q =
∑

π∗(p)=q

Np.

Let’s use [1, k] as notation for the ordered set {1, 2, . . . , k}. The number of equivalence
relations on [1, k] compatible with the ordering is 2k−1, as such relations are freely and
completely specified by the truth or falsity of the statements i ≈ϕ i+1 for i = 1, . . . , k−1.
We may consider the set of equivalence relations on [1, k] compatible with the ordering to
be a set of subsets of [1, k]× [1, k], and order it by inclusion. It is isomorphic, as a partially
ordered set, to [1]k−1. We use the isomorphism that associates (ε1, . . . , εk−1) to ϕ, where

εi =

{
0 if i 6≈ϕ i+ 1

1 if i ≈ϕ i+ 1.

For each equivalence relation ϕ on [1, k] compatible with the ordering, we let `1, . . . , `t
denote the cardinalities of the equivalence classes, in sequence. Consider the categoryMϕ

of t-dimensional chain-complexes that are, for each i, of length `i in the i-th direction,
and that are acyclic in direction 1 and in direction t. There is a total-complex functor
Mϕ →Mψ if ϕ ⊆ ψ, because the lengths add when total complexes are constructed, and
because the total complex of a multi-complex that is acyclic in one direction is acyclic.
Using these total-complex functors we may assemble the categories Mϕ into a k − 1

dimensional cube G̃(k)P = M of exact categories which will serve as the target for our
Adams operation map ψk.
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Actually, there is a little problem with getting G̃(k)P to be a functor from [1]k−1 to
the category of exact categories, because the composition of two total-complex functors
is perhaps only isomorphic to the combined total-complex functor; this is something like
failure of strict associativity for direct sums, and can be cured with an easy set-theoretic
trick, or by considering G̃(k)P instead to be a category cofibered over [1]k−1 in exact
categories.

We remark that there is homotopy equivalence G̃(2)P → GP that associates to an
acyclic complex of length 2, the images of the two differentials in it. The map ψ2 can
be viewed as a map |S.P| → |S.GP|, and it was this version which was found first, and
motivated the more general construction described in this paper.

Lemma 5.1. S.G̃(k)P is homotopy equivalent to S.P

Proof. Consider the edges of the cube G̃(k)P that lie in direction 1. These edges are total
complex functors Mϕ →Mψ where the only difference between ϕ and ψ is that 1 6≈ϕ 2
and 1 ≈ψ 2.

Consider first the case where 2 ≈ϕ 3 ≈ϕ · · · ≈ϕ k. The category Mϕ is the category
of bicomplexes of length 1 in direction 1, of length k − 1 in direction 2, and acyclic in
both directions. It is equivalent to the category of acyclic complexes of length k − 1, and
the functorMϕ → Pk−2 that assigns to an acyclic complex the collection of images of its
differentials yields a homotopy equivalence on K-theory, by the additivity theorem. The
category Mψ is the category of acyclic complexes of length k. The functor Mψ → Pk−1

that assigns to an acyclic complex the collection of images of its differentials yields a
homotopy equivalence on K-theory, by the additivity theorem. Let C : P → Mψ be the
functor that assigns CP to P ∈ P, regarded as an acyclic complex of length k. Then the
map S.[0→ P]→ S.[Mϕ →Mψ] is a homotopy equivalence.

Consider now the other case, where there exists j ≥ 2 so that j 6≈ϕ j+ 1; we claim that
S.Mϕ → S.Mψ is a homotopy equivalence. This again is a straightforward application of
the additivity theorem, just as in the previous paragraph. It is enlightening to regard the
additivity theorem itself as a statement something like the one at hand: it says that the
total complex functor from the category of one-by-one bicomplexes, acyclic in direction 1,
to the category of acyclic complexes of length 2, gives a homotopy equivalence on K-theory.

Combining both cases, we see that we have a map S.P → S.G̃(k)P, obtained by adding
additional trivial simplicial directions to S.P, which is a homotopy equivalence. �
6. The construction of the map.

In this section we give the formula for the combinatorial Adams operation map

Ψk : Subk S.P → S.G̃(k)P.

Here Subk is the k-fold subdivision introduced in [5]: if X is a simplicial set, then SubkX
is the k-fold multisimplicial set defined by

SubkX(A1, . . . , Ak) = X(A1 · · ·Ak).

There is a natural homeomorphism |X| ' | SubkX|, presented in [5]. Here is a way
to see how that homeomorphism works. Let V be an affine space of dimension n (torsor
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under Rn). Given points v1, . . . , vk ∈ V define their barycenter v1 ∗ · · · ∗ vk to be the point
(v1 + · · ·+ vk)/k. If S1, . . . , Sk are subsets of V , then we let S1 ∗ · · · ∗ Sk denote the set
{v1 ∗ · · · ∗ vk | vi ∈ Si}.

If A is a set {v0, . . . , vp} ⊆ V , let A denote the convex hull of A. If the vectors in A

are affinely independent, then A is a p-simplex. Let B and C be subsets of A; we write
B | C if i ≤ j for all vi ∈ B and all vj ∈ C. Given subsets B1 | · · · | Bk of A, the set

B1 ∗ · · · ∗Bk is a product of simplices, and such sets subdivide A in exactly the same way
that | SubkX| subdivides each simplex of |X|.

Given
M ∈ Subk S.P(A1, . . . , Ak) = Exact(Ar(A1 · · ·Ak),P)

we define

ΨkM ∈ Exact([Ar(A1)]� [Ar(A2)→ Ar({L}A2)]� · · ·� [Ar(Ak)→ Ar({L}Ak)], G̃
(k)P)

by the formula

(6.1) (ΨkM)(i1/j1, . . . , ik/jk) = CM(i1/`1) ∗2 CM(i2/`2) ∗3 · · · ∗k CM(ik/`k).

Here i1/j1 ∈ Ar(A1), and ir/jr ∈ Ar({L}Ar) for 2 ≤ r ≤ k. We define

∗r=

{
· if jr = L

⊗ if jr 6= L

and

`r =

{
`r−1 if jr /∈ Ar and r > 1

jr if jr ∈ Ar or r = 1

We spell out the needless conditions concening r = 1 and r > 1 so the same definition will
work below, in a context where j1 /∈ A1 is possible. Notice that jr /∈ Ar is equivalent to
j = L, for r > 1. Finally, one must interpret the symbols ⊗ arising in (6.1) as instances
of the symbol ∗r correctly: they are tensor products of acyclic complexes, but are to be
interpreted as yielding bicomplexes if we are looking at Ar(Ar), or as yielding complexes
if we are looking at Ar({L}Ar); this builds into the notation the business with all the
total-complex functors. One checks that ΨkM is exact in the variables ir/jr using the
multilinearity property (2.1), just as in [5].

On the level of the Grothendieck group, the secondary Euler characteristic gives the
inverse to the isomorphism K0P → K0G̃

(k)P. Combining this with the formula (3.1) we
see that our map Ψk agrees with the usual Adams operation on K0P.

We now check that our Adams operations agree with the usual ones on the higher
K-groups of a ring R. Consider the fibration sequence

G.P → P.P → S.P

from [3] which holds for any exact category P. For reference, we state the definitions,
where A ∈ ∆ .

G.P(A) = Exact(Ar({L,R}A),P)

P.P(A) = Exact(Ar({L}A),P)

S.P(A) = Exact(Ar(A),P)
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Here we regard {L,R} as an partially ordered set where L and R are incomparable symbols,
and interpret the concatenation {L,R}A for A ∈ ∆ as a concatenation of partially ordered
sets, yielding a partially ordered set; it was called γ(A) in [5]. The definition of Ψk given
in (6.1) applies unchanged to each term of this fibration sequence, except that now j1 /∈ A1

becomes a possibility, for we may have j1 = L or j1 = R. The result is the following map
of fibrations.

SubkG.P −−−−→ Subk P.P −−−−→ Subk S.P

Ψk

y Ψk

y Ψk

y
G.G̃(k)P −−−−→ P.G̃(k)P −−−−→ S.G̃(k)P

Having transferred our construction of Ψk to the level of the G-construction, one may
use methods just like those of [5] to prove that our Adams operation agrees with the one
defined by Quillen in [8], or those defined in [9].

One should be able to show directly, for any exact category P with suitable tensor
products and exterior power operations, that the Adams operations on the K-groups con-
structed here agree with those deduced from the lambda operations constructed in [5].

One striking feature of the construction of Ψk is the definition of the category G̃(k)P, in
which the multi-dimensional complexes are required only to be acyclic in the first direction
and the last direction. The map Ψk, on the other hand, involves only tensor products
of generalized Koszul complexes, so the multi-dimensional complexes occurring in it are
acyclic in every direction. One might imagine refining the map by changing the definition
of G̃(k)P accordingly. This would lead to a space which contains various deloopings of the
K-theory space for P, and thus might lead to Adams operations maps that decrease the
degree, KiP → Ki−jP. I think that all such maps might well be zero, and so these maps
will turn out to be simply spurious.
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