HIGHER ALGEB_RAIC K-THEORY : II
[after Daniel Quillen]
by Daniel Grayson

The purpose of this paper is to prove three theorems announced in
-Higher Algebraic K-theory : I by Quillen. ’

‘The first theorem says that the two definitions of K, (R) offered
by Quillen agree. The notion of monoidal category allows the construction
of a fibration which shows that K0R><BG1(R)+ is the loop space of QP(R).

The localization theorem concerns the localization of a ring,
R—>5"R, and identifies the third term in the long exact sequence.
It was first proved for Ky and K, by Bass. Gersten gave a proof for
the higher K; and conjectured the non-affine version proved here.

The fundamental theorem describes extensions R——=R[t] and
R— R[t,t"], and was first proved by Bass. The proof here involves
an application of the localization theorem to the projective line.

I thank Daniel Quillen for communicatihg.tb me his proofs of these
theorems and for his helpful explanations of them. :




Monoidal Categories and Localization

Suppose S is an abelian monoid which acts on a set X. 'S acts
invertibly on X if each translation s

X——>X

X > 88X .,

for seS, is a bijection. Define S 'X to be the quotlent SXX/8,” where
S acts on each factor of the product. Let S act on S'X by te(s,x) = -
(s,tx), and define‘X———>'§'X'to be x —= (1,%x). Then the translatlon "
{s,%x)—> (s,tx) has an inverse given by (s,x) +— (ts,X), s0 S acts
invertibly on §'X. The arrow X—S"'X respects the S-action, and

is a universal arrow from X to a set upon which S acts invertibly.

If S is abelian, then the set § 's is a group under the multi-
plication (s,t)-(u,v) = (su,tv). The map S————rs S is a homomorphism,
and is a universal arrow from S to a group.

This notion of localization is placed in the context of categorles
as follows.

‘Def: A monoidal category S is a category S with an operation

+ ¢ SXS—=>S and an object 0. There are natural isomorphisms
A+(B+C) = (A+B)+C, O+A = A, A+0 = A. The following diagrams must
commute '

..

A+(B+(C+D)) = (A+B)+(C+D) = ((A+B)+C)+D
(113 ns

A+ ((B+C)+D) (A+(B+C))+D ,

n

A+(0+C) = (A+0)+C
m ) s
A+C = A+C . (see MacLane)

Def: A left action of a monoidal category S on a category X is a
functor + : SXX——>X with natural isomorphisms A+ (B+F) £ (A+B)+F
and O+F ® F, where A,B¢S and F e X. Diagrams analogous to those

above must commute.

Def: A monoidal functor is a functor S——Ee»T where S and T. are monoidal

categories, equipped with natural isomorphisms f{A+B) & fA + fB and
£0 = 0. The following diagrams must commute :

f((A+B)+C) £ £ (A+B)+£fC = (fA+fB)+fC
Sl ' su

£f(a+(B+C)) & £A+f (B+C) & fA+ (FB+E£C)

£(0+A) = fO + fA . f(A+0) 2 fA + fO
i _ $it ] 1l

fa € 0+ fa fA fa+0 .

- IR

Def: A functor g : X =Y of categories with S-action, preserves
the action if there is a natural isomorphism A+gF £ g(A+F), and

(A+B)+gF £ g ((A+B)+F) £ g(A+(B+F))
it I
A+ (BHgF) = A+g (B+F) and
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0+ gF € g(0+F)
fi f |
gF = grFr -~ ~commute.

The commutativity of these diagrams yields the commutativity of
every diagram which should commute. -For details, see (Maclane). This
commutativity assures us that the constructions to be made will
satisfy the axioms for category or functor.

For details and notation about topological notions applied :
-to categories, and for the theorem about constructlng fibrations,
the reader should refer to(Qullled :

Def: If S is a monoidal category which acts on a category X, then
S acts invertibly on X if each translation

is a homotopy equivalence.

Def: If S acts on X, the category <S,X> has the same objects as X.
An arrow is represented by an isomorphism class of tuples
(F,G,A,A+F—»G) with A¢S and F,G in X. This arrow is an arrow
from F to G. An isomorphism of tuples is an isomorphism

A 2 A' which makes

A+F = A'4F

G. commute.

Def: - ‘The category S~ ' is <S,SXX», where S acts on both factors of
the product. The action of S on §'X is given by A + (B,F) = (B,A+F),
if S is commutative up to natural 1somorphlsm.

Notice that S acts invertibly on § X. The translation
(B,F) > (B,A+F) has homotopy inverse (B,F) +> (A+B, F), in light
of the natural transformation (B F)~————3(A+B,A+F) .

Note: If every arrow is an isomorphism in S, then (S,8> has initial
object 0 and is contractible. We now make the blanket assumption

for the rest of the paper that this condition holds. 1In practice,

S-is-usually the groupoid of isomorphisms in an exact category.




We consider now the progectlon on the first factor S X——*—(S S}
Call it p. The map P -is .given by - : - :

(B,F) ¢ (B) on objects, and by
A,A+B,A+F) A,A+B
L ) |
. on arrows.
B', F} { B!

Suppose we are given an arrow B——>B' in <S,S>. It may be represented
by some (A,A+B—->B'), and the arrow determines A up to isomorphism,
but not up to unique isomorphism. An automorphism of the data giving
the arrow is an automorphism a:A=A such that

axl
A+B £ A+B

N

We see that if A+B—=B' is monic and Hom (A,A)——s Hom (A+B,A+B) is
injective, then the isomorphism a is necessarily the identity. So
assume '

B' . commutes.

1) every arrow of S is monic

2) translations S—>S are faithful.
Under these conditions, every arrow in <S,S> determines its A up to
unique isomorphism, and P is cofibred.  The cobase-change map for an
arrow (A,A+B—=B"') may be glven by

/?B—————-——-va'
(B,F) —> kB',A+F).

If we identify the fibers with X via the second projection, then the
cobase~change map is just translation by A on X. If every translation

on X is a homotopy equivalence, then all the cobase-change maps are,

so the square -
X———=85 X

1

pt —=<S,8> is homotopy cartesian. But <S,S>
has initial object 0, so the map X—=S'X given by (F) +—> (B,F)
is a homotopy equivalence.
On the other hand, suppose X—=§ X is a homotopy equivalence.
This map is compatible with the action of S, and S acts 1nvert1bly
on §'X. Therefore S acts invertibly on X.

We have shown :

Th: X—=5'X is a homotopy equivalence if and only if S acts
invertibly on X. :




Homology Computation

Now 7S acts on H X, and acts invertibly on H S'X, so Xx—=g'x,
the map given by (F)&—E+ (0,F), induces a map

-] -1
(m . 8) HX-—=H (S X)
0 P P
Th: This map is an isomorphism.

def: If M is a 7 _S-module, define a functor M : <S,8>—>(ab gps) whidh
sends each object (B) to the-abeliafi group M, and sends an arrow
(A,A+B—=>->B"') to multiplication by the class of A on M.

Pf of Th: If w_S acts invertibly on M, thenAﬁ is a morphism-inverting
functor, and tge homology group H (<S,S>,M) reduces to singular homology
on the classifying space B<S,S> th coefficients in the local coefficient
system determined by M. Since <S,S>» is contractible, we know that

Hp(<s,s>,i~'4') = M if p = 0, and
0 if p > 0.

Every fiber of the cofibred map S X-12~—<S‘S> is identified with X,
and the cobase-change maps are given by the action of S on X (see p 4).
The spectral sequence for the map is thus :

2 — -1
E- = H (<8,8>,H X) —>» H__ (S X).
olet p( g ) ptq

This spectral sequence is obtained from the bicomplex :

qu = - 4L z
Bo-—>. . .-->BP Nq(p\Bo)
m

N <§,8>
P

An action of S on this bicomplex is determined by the action of S on s'x
(via the X-component) and the action of S on <§,8> (the trivial action).
Taking homology first in the g direction yields

1l ’ , =)

E- = : H B ) = |l H (B = H X
- B'—-lf.lf.—-s q(p\ o) 1L 1 Bo L Ry
. 0 o

E2=H(<SS>HX)

Pq p T g

The action of S on the abutment and the abutment itself are computed
using the degeneracy of the opposite spectral sequence, which begins




EX = 11 z ifp=0, and
' | s ' ' '

:8!-'-'

0  ifps> O.

. =t . . . ’ .
The action on the abutment H S X is the ohe induced by the action of S
“ ptq . :
on S 'X.
Localization with respect to a multiplicative subset of a ring is
exact, so it preserves our spectral sequence. We localize with respect to

ﬂOS inside its own integral group ring, and obtain

1 -1 : Lo -t

E = (n.S H X T.S) H S X).

g (0).NJ<—‘;S>q > (MS) Hy (5)
pl

Now S acts componentwise on El ., and acts invertibly on H (éqx), so we -
get: pq . ptg : .

1 -l
qu = II (ﬂOS) qu, and
2 e -1
E- = H (<s,8> SY'H x —> H__ (S X).

By the remark at the beginnjng of the proof, we know that this localized
sequence degenerates from E” on, and the edge map is an isomorphism:
~ .

-) ol -}
S 2 m .
(‘WO ) HqX Hq (8 X)

That the edge map is the map induced by X —> §4X can be seen by
comparing the degenerate spectral sequenceswhich result from the
following map of fibrations

X - X > pt
T
> SX — <S, 5> ' QED

Actions on fibers

Suppose f : X—>Y is a map of categories on which S acts,
f is compatible with the actions, and S acts trivially on Y. Then the
action of S on X is said to be fiberwise with respect to £, and S does
act on the fibers £ G.” If f is fibered and the base change maps respect
the action on the fibers, then the action is said to be cartesian. In
this case, s'x is fibred over Y, its fibers are of the form S™f G, and

the base change maps are induced by those of f.
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We consider now the projection on the second factor s

Call it g.. Assume

X—m<§,X>,

.1) every arrow in X is monic, and . : ..
2) for each F in X the map S—* X given by
- B —> B+F is a faithful functor. :
Reasoning as before, we see that g is cofibred, each fiber may be 1dent1f1ed
with 8, and the cobase-change maps are translations. :
Let S act on S7X via the first factor. This action is cartesian
with respect to g, so localization yields a cofibred map S'S'X — <5,%,
each fiber of which may be identified with s's. since S acts invertibly
on s7s, the cobase-change maps are homotopy equivalences, so

-} -

sls —— = 55 x
§'pt —————— <5,X> is homotopy cartesian.

The map SJS-——w-Sdqu is given by (aA,B) v (A, (B,F)) for some fixed F in
X. Consider the following diagram :

' s's : - 57y
g s
0 | ,
s”'s > §7'%
§7'pt » <§,X>
=
<§, s> <s, x>

The back square is that which we just showed was homotopy <cartesian. The
_map s's = S™Ms is the switch isomorphism given by (A,B) +—> (B,A). The
map § X———a-S 's™X is the usual map given by (A,F) v+ (0,(A,F)). The map
pr, : s” S-——ﬁ><S S> is given by (A,B) V——= (B). Every square but the top
is commutative, and the top square is homotopy commutative, as shown by
the following natural transformations of functors §'S — §'S™X s

(0, (A,B+F) ) ——> (B, (B+A,B+F) ) =2 (B, (A,F)).
‘Notice that §'X —s 57'S™X is a homotopy equivalence {see Th on p.4).
Thus the front square is homotopy cartesian. Combine this with the fact
that <S S>is contractible, and we arrive at the following theorem :

. . - =~ .
Th: If <S,X> is contractible, then the map S's—>s X given by
(A,B)t———(A,B+F) for some fixed F in X is a homotopy equivalence.




The Plus Construction

The most important example. of the previous constructions is the
case where P is an exact category in which every exact sequence splits,
and S = Iso(P) is the subcategory of P whose arrows are all isomorphisms
of P. Direct sum is the operation which makes S into a mon01da1
category. S'S becomes an H-space with multiplication §'s X §'s—=g 's
given by ((A,B), (C,D) )~—m (A®C,RSOD).

Suppose R is a ring, and let P be the category of finitely
generated projective R-modules. We see easily that T S”S is K.R.
If A 1s a projective R—module, we can define a functor from Aut(3)
to 87's by sending u : A £ A to the arrow (lA,u) : (A,A) £ (A,R).
The natural transformation (A,B)—=(A®R,B®R) on S™'S shows that
this diagram commutes up to homotopy :

Aut (A) Aut (A®R)

ss.

Thus we can define a map from BGL(R) = lim Aut(R™) to § 's. 1In fact,
this map lands in the connected component of the identity, (S"S)O

We can realize this map by using the telescope construction.. If
S_ is the component of S which contains R®, then Sn is a groupoid
equivalent to Aut(Rn) = Gl,(R). Define S,—Sn+1 by (B)—(R & B),
and S —»=8 to be the composite of m of these functors. If N is the
ordered set of positive integers, we have defined a functor from N
to the category of categories, and can construct the corresponding
cofibred category L over N. The objects of I are pairs (n,B) with
B in S n' and an arrow from (n,B) to (n+m,C) is an isomorphism
R & B g C. L is homotopy equivalent to BGL(R). ;

‘Define L—>5"'s by (n,B)—(R",B).

Let e in m,S be the class of R. Since each projective module is
a direct summand of a free one, the monoid generated by e 1s cofinal
in TyS. Thus HpS'S £ (T,S)'Hps = Hps[1/e]. 1f (R",B) & (s ‘s) , then for
some m,Rn+m =B eR. Thus any elememt of H ((S'S) ) is of ghe form x/e
for some n and some Xx eHbSn. We see that H ((s™s) ) £ lip HPS = HPL.

We can conclude that L—(S"'S) . is an acxcllc map. Slnce
(S'S)o is an H-space as well, it must be BGL(R)

The multiplication on the H-space s'S has a homotopy inverse
given by (A,B)+———(B,A) so the components must all be homotopy
equivalent. We have proved :

Th : s's is homotopy equivalent to K R X BGL(R)™.




Cofinality

Suppose M = P are exact categories in which every .exact sequence .
splits. Then M is cofinal in P if given A eP there exist Be P and
CeMsoA@®@B=C, and if M is a full subcategory of P.

Th : If M is cofinal in P, then QM—=QP is a covering space, and
K M—=K P is an isomorphism for g > 0 and is injective for

qq= 0. q

For a proof of this theorem, see (Gersten).

' Suppose f : S——»T is a monoidal functor. Then f is cofinal
if given A ¢ T there exist BeT and Ce S so that A + B € fC.
Suppose T acts on X, and S acts on X through £.

-

Th : If f :+ S——=T is cofinal, then S-lx = T[X.

Pf: The point is that S acts invertibly on X if and only if
T acts invertibly on X. Thus

-1 “ N -1
SX=T (5X) =8 (TX)=T"T7RZX.




The Extension Construction

Let P be an exact category in which every exact sequence

- splits. . Then S = Iso(P). Given C in P let E_, be the category
whose objects are all exact sequences (0—A~—+B-wC~0) from P,.
and whose ‘arrows are all isomorphisms which are the identity on
C: -

0—»> A~>B—=C—~»0’

We define a fibred category E over QP with fibres E_,. The
base-change map E —-—»—EC, for an arrow C'—=C in QP can be described
as follows : .

a) for an injective arrow C%»—»C, given 0—+»A—>B—»C—0,
construct the pullback 0—»A—>B'—(C'—0 :

0—A—>B'—>C'—>0

_m

‘0—>A—»B—>»C—0.

b) for a surjective arrow C' «——C, given 0—>A—>B—>C—->O,
compose the surjections to get a surjection B—» C', and
let A' be its kernel. We obtain O-—>A'-»B—C'-»0 in
Eqt e ’ ' ‘

C

0—->A'—~B=—9- C'—0
O—+A~vB->C—-O.

We see that E is the category whose objects are exact sequences
0—>A~—>»B—>»C—=0 from P, and whose arrows are represented by
diagrams: '

0—-A'B'—>C'—0

4

O0—-A—B' ~C;—~0

| 1 ¥

0—A-—~+B—C-—+0,

but that isomorphisms of such diagrams involving ¢ give rise to the
same arrow in E. The fibred map E—=QP is the projection
(0—A—»B—>C—»0)—=(C), and every arrow of E is cartesian.

We let S act on E by setting (A') + (0—»>A-—»B->C-0)
(0O—A' ® A—»A' ® B—»C—>»0) and observe that E—QP is
fibrewise and cartesian with respect to this action.

Notice that the map S-—\»E0 given by (A)+—(0 —>A—>A———O—->O)
is an equivalence of categories. :




Th: For any C in P, {S,EC> is contractible

Pf: Let M denote (S,E_>. We show
‘ i) M is connectéd,
ii) M is an H-space,
iii) the multiplication on M has a homotopy inverse,
iv) the endomorphism x——>%2 on M is homotopic to the identity, and
v) M is contractible. .
We define the product on EC using pullback in P : given F =
(0—->-A —>B —-———>C-—-——O) , set

Fl*F = (0—>A, @A _—>B, X B —>C-—0).

2 1 2 1 ¢c "2

Projection on one factor gives :

(0—-—>-Al @ Az———bB X B,—»C—0)

1 C 72
i i (1)
“Al fBl—'—'—">‘C —""0) .

We may choose a splitting for the surjections and obtain an isomorphism

A, + Fi =Fy*F,, and this determines an arrow Fl———A—F %-FZ in <8, EC>'

Similarly, we may construct an arrow F2———+-FI*F2, and we have connected
Fy and F, and proved i).

The constant functor to (0 Q0 —»C~—>»(C—>0) provides an
identity for the operation just defined, so M is an H-space.

Any connected H~space has a homotopy inverse : consider

Y XM — 2

[

where £ is the map (X,Y)k———>(XY,Y), and g is (x)+~——(x,e), where e
is the unit element. Since M is connected, the rows are fibrations,
and the vertical maps on the fiber and on the base are homotopy
equivalences, we know the total map f is a homotopy equivalence,
with inverse h, say. One checks that the map xv» prl(h(e,x)) is

an inverse.

If F.=F_ then in the diagram above (1), the diagonal map provides
a canonical £plitting of the surjections, and yields a natural »
Sarrow F1—~——>Flk Fl. This natural transformation gives the homotopy
of iv).

Consider homotopy classes of maps [M Nﬂ By ii) this set is a
mon01d, by iii) this monoid is a group, by iv) the elements of this.
group satisfy the equation x2?=x, and is therefore trivial. Thus
M is contractible.

QED
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_ -1
Th: The square S 'S——§ E

pt ——» QP . is homotopy cartesian.

Pf: We must show that the base change maps for the fibred map
S'E——= QP are homotopy equivalences. It is enough to consider

those associated to injective and surjective arrows of QP of the form
0>——C and 04— C. We will treat only the surjective case since the
"injective case is similar.

Identifying E, and S, the base change map j* : E—E_is
(0—>A —=B—=C—»0) —> (B). Consider f : E,—Eq given by
(A)—»(0—>A —>A & C—>C—=0). Since (S,EC> is contractible,

a previous theorem tells us that S™'f : S"Eo SﬂEC is a homotopy
equivalence. The composite j*eS'f : SqEO———»-SﬂEO is given by
(A',A)—>»(A',A® C). This is a homotopy equivalence, as we have
seen before, so j* is a homotopy equivalence. '

QED
Th: S'E is contractible.

Pf: If X is a category, its subdivision Sub(X) is the category whose
6bjects are the arrows of X, and where an arrow from f to g is a
pair of arrows from X, h and X, such that kfh = g. One sees that the
codomain map Sub(X)—X is a homotopy equivalence.

If X is the subcategory of QP of injective arrows, then E is
equivalent to Sub(X). X has initial object 0, so E is contractible.
Then S acts invertibly on E, so we know that E and S'E are homotopy

equivalent. The Theoxrem is proved.
QED

Th: 0P Vv KR X BGL(R)™.

0

This Theorem is a corollary'of previous theorems. Here P is the
category of finitely generated projective R-modules.
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" The Localization Theorem for projective modules

Suppose-X is a -quasi-compact scheme,
‘U is an affine open subscheme of X,
is the inclusion U € ¥,
is the sheaf of ideals defining the complement X-U in X, .
is locally principal and generated by a non-zero-divisor,
is . the category of quasi-coherent sheaves on X which are zero
on U and admit a resolution of length 1 by vector bundles on X.

Mok

Th : There is an exact sequence

o > K K_3 U
q+1U o - Kq
for q =»0.

Pf: Let P be the category of vector bundles on X,
——- V the category of vector bundles on U which extend to vector
bundles on X, and
Pl the category of gquasi-coherent sheaves on X which have a
resolution of length 1 by vector bundles.

U is affine, so every exact sequence in V spllts. Let E be the
extension construction over QV.

.Iso(P) is cofinal in Iso(V), SO we may use 1t instead of Iso (V) ;
let S = Iso (P).

We will construct a diagram'of categories with S-action :

.G £ B -
Al
NP eV

and show that f and h are homotopy equivalences. ILocalization will give

Csle—2 g ~sE A~ pt
i Lo
OH : QP ————QV,

with the right-hand square homotopy cartesian. Combining this with
the cofinality of V in all vector bundles on U gives the result.
The map KqH———aqux differs by a sign from the usual one.

12




In order to simplify notation, it is convenient to replace E by
the equivalent category whose objects are surjections (B—»C) with
B,CeV. That this category is.equivalent is clear because a surjection
determines its kernel up to unique isomorphism. An arrow in E is now

represented by :
. Bl___»cl

|l %

B'—»C,

] o

B ——»C.
F is defined as the pullback in F——>FE
QP —=0OV.

Its objects are pairs (B,Z—>>j*B) with BeP, Z ¢V. An arrow may be
represented by B :

Bl Tl aa j*Bl
B} Z'— j*B)

oy«

B Z——»j*B.

G is a sort of extension construction over Q(HXP). Its objects
are surjections (L —»>M®B) with L,B€P and M€ H. Its arrows are

represented by diagrams :
L'—»>M'eB!

1“.' —-»MleBBl
L,

and isomorphic diagrams give the same arrow. The vertical arrows
~on the right are each direct sums of arrows from H and P.

G—> Q(HXP) is defined by (L—»M®B) +» (M,B). This map is
fibred. ’

g : G—»0QP is defined by (L —»MeB) > (B), and -
h : G—QH is defined by (L—>»M&B) +-» (M). Both g and h
are fibred. . : '

f: G—>F is defined by (L—»MéB) t—> (B,j*L—>>j*B).
S acts on G via () + (L—LsMeB) = (AeL(—og»MeaB). The action

on F is similar, and is that induced by the action on E. § acts
trivially on QH, QP, and QV.
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Lemma 1 : h : G—=QH is a homotopy equivalence.

' ggj Let R be the category‘Whose objects are surjections (L—»M)
with L eP. M is a fixed object of H. The arrows of R are given by
diagrams. :

| %ﬁ

_—_"_%M,

B e

where L'>——» L is an admissible monomorphism of P, i.e. its cokernel
"is a vector bundle.

There are natural transformations
(L—>»M) — (LSL'—» M) «— (L'—»M),
so R is contractible.

Its subdivision, Sub(R), is equivalent to the fiber h™ (M), which
is therefore contractible.

Since each fiber of h is contractible, h is a homotopy equivalence.
QED

~Lemma 2 : If C is a vector bundle on X, then C & j,i*C, and
and :
jaire = U 1mc,
n

Pf: The question is local on X, so we may assume X is affine and

I is generated by the function w on X. Let R be the ring of X, so
X = Spec (R), U= Spec(R[1/w]). C is a projective R-module, and
w is'a non~zero-~divisor in R, so w is a non-zero-divisor on C.
Thus € €C_ = C @ R[1/w], and ¢, = U w nc.QED

Lemma 3 : £ : G—»F is a homotopy equivalerce.

Pf: Both g and p are fibred, so it is enough to show £ is a homotopy
equivalence on each fiber over QP. If B € QP, consider the map
g"B..——>p"B. » .

Let T be the category whose objects are surjections (L —3>B)
with L €P, and whose arrows are diagrams
' L'—>>»B
L —»B,
where L'>—>1L is an admissible mono from Py whose cokernel is in

H, i.e. any injection which is an isomorphism on U.
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Then the functor Sub (T)—————> g'lB_ given by

L'—»B

I

‘ L—_ﬁ}B

> (L——>» (ckr i) @ B)

is an equivalence of categories.

Let W = j*B, so that p g = W' We must show that Sub ('.I‘)————-EW
is a homotopy equivalence. This map is

L'—3 B
(I ||> = (F*L —3> j*B=W) .
L - B

It factors through the target map Sub(T)—-» T, which is a homotopy
equivalence, so it is enough to show that the map 'I'_—‘-'*—"—->]E:W given
by (L—>>B) v> (j*L—>»>j*B=W) is a homotopy equivalence. To do
this we need only show that each fiber w/(Z—>» W) is contractible,
where (Z-—»W) is an object of Ej.

An object of this fiber category is an object (L—>»>B) of T
with. an isomorphism w(L—»B) = (Z —-—»W) which is the identity on
W, i.e. .

(L_»B ’ JsuL —»JﬁB)

Define an ordered set Lat to be the set of vector bundles L
on X such that :
- 1) L=3j,2,
2) j*L = 2, . '
3) the image of the map (L < Jy2—»3,W =3, i*B)
is B.
Elements of Lat will be called lattices.
The obvious map from Lat to the fiber w/(Z—>W) is an equivalence
of categories, so we need only to show that Lat is contractible ;
we show it is actually filtering. '

We have an exact sequence 0 =Y Z W 0 in V which
splits. Now Y = j*C for some C€P, so Z = j*(C @ B). Consider
the lattice C® B« j,Z. If (L —« j,Z) is another lattice, then
condltlon 3) insures that L< j,j*¥C © B. Now by lemma 2 j j*C =
U I C, and L is finitely generated locally on X,which is quasi-
compact, so for large n, L € I_Nc = c.

Thus Lat is filtering, and Lemma 3 is proved.

: QED
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The end of the proof of the theorem is now near. S acts trivially
on QH, so by.lemmas 1 and 3 it acts. 1nvert1bly on G and F. Thus
G and F are homotopy equivalent to S "' and § F, respectively, and
h and f remain homotopy equlvalences after localization. We know that
s E——-—s—QV is a fibration, so s F—»-QP is, too, since it has the
same fibers. Since the homotopy fibers of these two maps are the
same, the square " i
S F—>S E

QP———> QV is homotopy cartesian.
As indicated earlier, we now know that
BQH ~——>- BQP —>~ BQV

has the homotopy type of a fibration, and the cofinality of V in the
category of all vector bundles on U gives the long exact sequence
we want.

It only remains to compute the map K H—»=K P. To do this
we show that the square E !

G —— QP

v

QH ——>» QP commutes up to sign.

"The two functors G__—"_,QPl are given by (L —»>M@B)+— (M)
and by (L —»M®B) +—> (B). The map (L—»M@®B) > (M@B) is their sum,
so we must show this map is homotopic to a constant map. The functor
(L —»MéB) > (L) maps all arrows of G to injective arrows of
QP., so 0> L —» M®B exhibits two natural transformations which
give the desired homotopy. '

The theorem is proved.
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Suppose R is a ring, .
_.S€R is a multiplicative set of central non-zero-divisors,
H is the category of finitely generated R-modules M of
projective dimension €1 such that M_=0.

S
Th : There is an exact sequence
. .. ——»-Kq+lRS ‘ KqH 2o KqR ————>'KqRS

for gz 0.

The proof is formally the same as the proof of the previous theorem,
except that Lemma 2 is replaced by: ’

Lemma 2' : If C is a proje'ctive R-module, then C < CS, and

Cg = U s'c.

S€S
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The Suspension of a ring

This section is included so we can corniplete the proof of the
fundamental theorem in the next section. We must ensure that a certain
computétion of Loday's involving products using the +-construction
is compatible with our use of the Q-construction. - :

Suppose A is a ring. Then the cone of A, CA, is the ring of
infinite matrices with entries in A which have only a finite number
of non-zero entries in any given row or column. The matrices which
have only a finite number of non~zero entries form a two-sided ideal
.. I € CA. The suspension of A, SA, is the quotient ring CA/I.

Let e be the element of CA whose only non~zero entry is a 1 in the
corner :

It is idempotent, so CA = eCA ® (l-e)CA is a decomposition of CA into
A-CA-bimodules. We use this to define w as the composite

GLA —> Aut((ecA)’y ———= aut(ca®) = G1 _CA.

It sends a matrix (ai.) to the matrix (b..) where b,. = 3, .e if
i#3, and b, = a &+ (l-e). 13 i34

Th: [Gérsten—Wagoner] (i) X cA x BGl(CA)+ is contractible.

0
. + w +
(ii) K_AxXBGl(A) -——— K _CAXBG1 (CA) — K

+
0 0 SAXBG1(SA)

0

is a fibration.

Let P(R) denote the category of finitely generated proﬁective
- right R-modules.

Def: v : P(A)‘-——a- P(CA) is the exact functor B +» B %(eCA).

Th: , QP(A) — QP (CA) —>QP(SA) is a fibration which is a
delooping of the Gérsten-Whgoner fibration.

Pf: We use the'naturality of the extension construction to lbop this

seguence, yielding N ) i
s s(a) Y»s's(ca) —= S S(s2).

Here S'S(A) denotes S'S where S = Iso(P(a)) (for any ring al

18




The two functors Aut (An) — S-IS(CA)

vV 3 a b (l-eCAn ra® leCAn)

W a tr— (lCAn ’ aAg& ]feCAn D )

l(l-e)CAn

are homotopic, so we identify the looped sequence with the Gersten-—
Wagoner fibration. The sequence in the statement of the theorem
- consists of connected H-spaces, so it, too, must be a fibration.

QED
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The Fundamental Theorem

Suppose A is'a {not necessarily commutative) ring.
Def: NK A = ckr ( K A—>K At
3 (% Alel)

Def: Nil (A) is the exact category whose objects are pairs (P,f), where
P is a finitely generated projective A-module, and £ is a nilpotent
endomorphism of P. .

- Def: Nilg(a) = ker ( K Nil(a)—>K.A )
Th: 1) NRA £ Nil__, (3)

2) xg@fe, e = xpor a0 NKqA @ NK,A

Pf : Let X be the projective line over A. Then X has open subsets
spec (A[t]) and Spec(A(t™]) which satisfy the conditions of the
localization theorem for projective modules. We get :

. __>an———>.qu‘—-—>qu[£ ——> Ky H— - -

“ l | l ' “ (*)

—->1<qH——~?KqA[t]—>KqA[t,t"]—>Kq_lH——» .
The naturality of the long exact sequence with respect to flat maps
is clear from the proof of the localization theorem. The vertical
equalities involving H arise from the fact that the category of
abelian sheaves on X which vanish on Spec(A[t™']) is equivalent to
the category of abelian sheaves on Spec(A{t]) which vanish on

Spec (At, t™]).

If  (P,f)e€ Nil (A), we have the characteristic sequence of f :

0——spt]—Es plt] P >0,

where P is the Alt]-module P with t acting as f. Since f is nilpotent,
Pge is zero on Spec(A[t t” J), so determines an object of H.

If M is an A[t]—module of projective dimension €1 killed by some
power t? of t, then M is a projective A-module. For, let
0—>P —>Q —>M—=0 be a projective resolutlon of M by A[t]-

modules. Then "
O——d»hd——ryP/t P-——srP/t Q——>0

is exact, and P/t"P is a projective A-module, P/th is an A-module
of projective dimension 1. Then M is projective.

Thus Nil (A) > H
(®,£) — Ps

is an equivalence of categories.
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The K-theory of the proﬁecti

ve line was computed in (Quillen).
We know o L
. KqX = KqA -l 6 KqA . Z,
whére 1= cl(OX), z = cl(OX(—l)) in KOX. We alter this basis
slightly : . . ‘ '
’ & KqX = %A_- (1~Z). ) KqA « 1.
Let U = Spec (a[t]), and V = spec (aft"]).
Now, 1- ’ ‘
KA 2 K X KqV
is zero, since O¢ly = OX(_l)Iv'
and {
KqA ) K.qX >va

' is the usual split injection
induced by A———>—A[t”]. Thus the top row above splits into pieces
0——>K,A —>

RqV ——=K,_1Nil(a) >

Kg-12 >0. (#)
1f (P,f) € Nil (A), then the characteristic sequence extends to all of
X as ' - '

0-——>Py (-1) PX - =P — -0,

Thué, the square

K g ML () —=——s

| Ky-1H-
) l
 Kg-12 1-z =Ky-1X commutes, and

the last map of (#) is the usual projection. Splitting off the
first and last terms of (#) gives NKqA & Nilq_l(A), proving 1).

From (¥) we derive the Mayer—Vietoris sequence :

o v

=KX ——=Ka[t] ® KqA[t"]-——aKqA[t,'t"]*-—v-'

Kq_lX———-—>- ‘oo
‘and, as above, split it into shorter pieces :

0=k —=ka(t] o xalel—exAft €—x _;a—o.

According to (Loday, Coro 2.3.7), the map K A[thﬂ————e>K A is
split by the map induced by cup-product with t. All we nedd to do
is verify that his definition of this map agrees with ours, so we must
check that

KA le, £ —Eet

K _SA
q
A d - »
Kg-1H Kq—]Nll(A)_"f%;T“f*’ q—lA commutes
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Loday uses the\+~construction for his definition of the isomorphism
K SA =K _A, but we saw in the previous section that we may as well
‘ude the §-construction. ILet ' L
T= /0 and ¢ = [0 1
10
10 | oL
1. 01

. be elements of CA.
They satisfy 10=1, oT=l-e. .We have the commutative diagram :
Aft] ——sa[t,t™)
+ .
¥
T
CA ————>GA,

We now refer to the proof of the localization theorem. If P_(R)
denotes the exact category of finitely-generated R-modules of
projective dimension {1, we may conclude that

QH ——> QP (A[t]) —>0QP (Alt,t])

is a fibration homotopy equivalent to the one produced by the theorem
except for a change in sign of the left hand map. Notice that in the
- first part of the proof of the fundamental theorem we have implicitly
used the maps with this more natural sign-sense.

Let H' be the exact category of right CA-modules B of projective

dimension <1 such that
B ®CA sAa = 0.

Since eCA € H', the map v : QP(A)——>QP(CA) yields a map QP (A)-X>QH'.
Consider this diagram :
ONil (A) —=— QH > QP{A[t]) —=>QPAlL,t1])

Lo |

QP (&) —— OH! > QP, (CA) ———>-QP_ (SA).

A functor H——=H' is defined by MI— M Gk t]CA, but we must
check that this CA-module has the right projectlée dimension, and
that this functor is exact. It ‘is enough to see that the characteristic
sequence of an element of Nil(A) remains exact under this tensor
product. At issue is the injectivity of 1-f : P® CA—= P® CA, and
this is true because the sum of an injective endomorphism and a
nilpotent endomorphism which commute is injective.

We must also check that the left-hand sgquare commutes. If
(P,f) is in Nil(A) then there is a natural isomorphism

Pf ®A[t]CA = p ®A (eCn)
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defined by the diagram

0 ———-—>P®ACA -~ P @ACA @ {(eCa) ——-—>0

. %
-f

® .
0*——>P® CA—>=P® CA—-———:—Pf A[t]CA—a"O
33

where 1 + fa + f 0 + £7¢7 + ... is the vertical 1somorph1sm.
This isomorphism yields the commutativity of the square in questlon.

......as

Finally we define the categories P'(A[t]) and P'(A{t,t"]). P'(A[t])
is the full exact subcategory of P (A[t]) consisting of modules M

satisfying
rort " (w,ca) =

We saw above that this category contains H. P'(Alt, fq]) is defined

in a similar fashion relative to SA. It is clear then that these )
categories fit into the diagram as indicated, and the resolution theorem
says that the top row still c¢ontains a fibration equivalent to the
original one.

We conclude that we have a map of fibrations, so the naturality
_of the boundary map in the long exact sequence of homotopy groups
yields the commutativity of

-\ .
K Alt, £ =K _Nil(a
g [t,t'] -1 )
K_SA D > K .A .
q : g-1

This concludes the proof of the fundamental theorem.
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