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The main result in this paper was proved by Quillen by 1974, I
have used three sources in assembling this exposition: notes taken by
Hyman Bass at a talk of Quilleh's in Oberwolfach on June 25, 1974;
notes from a course given by Quillen at MIT iﬁ Spring, l975;yand4re—

cent telephone conversations with Quillen.

For a riﬁg of integers in a number field, Quillen had already
shown the groups KiA are finitely generated by September, 1972, when
he spoke at the Battelle converence [Q2]. An examination of the proof
there reveals that the only portion which is not true for every Dede-

kind domain A with(fraction field F is the following pair of

assertions.,
(0.1) Pic A is finite.
(0.2) If P is a finitely generated projective A-module and

W=P"P @A«F, then Hi(Gl(P),st(W)) is a finitely generated

abelian group for all i.

Here st (W) denotes the Steinberg module of W. 1In the notation of [Q2]
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' is the Tits building of W, and st (W) = 'I:I'n_z.() with n = dim w.

We phrase this result as follows.

THEOREM 0.3 [Q2]: £f A is a Dedekind domain with fraction field F

satisfying (0.1) and (0.2), then KiA is finitely generated for all 1i.

The title of this-paper refers to the following theorem.

THEOREM 0.4: f C 4is a nonsingular algebraic curve over a finite

field, then KiC is a finitely generated abelian group for all 1i.

Its proof will of course depend on (0.3). Harder subsequently

complemented this result by proving these groups are torsion.

THECREM 0.5 [H, 3.2.3]: £f C 1is a nonsingular affine algebraic

curve over a finite field, then K,C is torsion for i > 1, and SKlC

is torsion.

(This is the corect statement of his result, because his tech-
nigques apply to Sln, not to Gln. KlC-is torsion iff C has only one
point at infinity, because it contains the units. Bass, Milnor, and

Serre [BMS, Corollary 4.3b] have shown, in fact, that SKlC = 0.)

COROLLARY 0.6 [H]: The groups in (0.5) are finite groups.

One interesting consequence of Theorem 0.4 is the following.

CORCLLARY 0.7: f A is a finitely generated Z-algebra of dimension

< 1, then KiA is finitely generated for all 1i.

By definition, KiA = KiM(A), where M(A) is the exact category of all

finitely generated A-modules.




Proof: If I is a nilpotent ideal in A, then the dévissage theorem
[Q1, p.112] implies that KiA ='KiA/I: thus we may assume A  is reduced.
If £ € A, then the localization theorem [Ql, p.113] yields an exact

sequence:
. .—-»Ki (A/fA)—-»Ki (A) ——PKi (Af) ——-Ki_l(A/fA) —_—. ., -—’K(') (Af)—-bO.

If f 4is a nonzerodivisor, then dim A/fA < dim A, so byvinduction on
dimension we may replage A by Af. Localizing in this way allows us
to ésSume thét the irreducible comﬁonents of Spec A do not meet.
Since Ki commutes with finite products, we may assume A is a domain.
Since all prime’fields are perfect, the map Spec A - Spec Z/p
(p = éhar A > 0) is generically smooth, and we may localize A fur-
‘ther to make it smooth., Now A is regular, so the resolution theorem
[@1, p. 110] says that KiA = KiA’ |

If p =0, then A 1is the ring of S-integers in some number field
F for some finite set S of places., Finite generation in this case
was proved by Quillen in [Q2].

Ifp % 0 and dim A = 0, then A’ is a finite field, and Quillen
computed these explicitly in [Q3]; in,particular, KiA is finitely
generated.

If p# 0 and dim A = 1, then Theorem 0.4 gives the result. Q.E.D.

Remark: Bass has conjectured that KéA is finitely generated for any

finitely generated Z-algebra. Corollary 0.7 is progress toward the
. natural generalization of this conjecture to the higher K-groups.
Bloch [B] has recently shown KéA is finitely generated in the case

where char A = 0 and dim A = 2, and expects the same technigues to

work when char A # 0 and dim A = 2.




The idea for the proof of Theorem 0.4 arises from Serre's 1968-

69 course [S] on Sl He considers a smooth projective curve ¢ over

o
a finite field, a closed point » € C, and the coordinate ring A of

C - {»}. Serre obtained results about I' = G1_ A and its homology by

2
studying the way it acts on the Bruhat-Tits building X for the dis-

crete valuation ring & X is a tree, and he interprets its ver-

C,w’
tices in terms of vector bundles on C. The vector bundles which are
close to being semistable determine a finite subgraph of X/T [S, p.

143-6] whose complement is a disjoint union of half lines, one for

each element of Pic A. Quillen's contribution here is to extend these

ideas to GlnA.

THEOREM 0.8: £ Spec A is a nonsingular affine algebraic curve over

a finite field with just one point at infinity, and F is its frac-

tion field, then A satisfies (0.2).

The proof of this theorem constitutes the bulk of the remainder

of the paper.

Proof of Theorem 0.4 from Theorem 0.8: We may assume C is irreduci-
ble‘because Ki commutes with finite productsofrings. Now C 1is an
opeﬁ subvariety of some projective nonsingular irreducible curve C.
The localization theorem, as used in the proof of (0.7), allows us to
replace C by Cc. We may thén replace C by the complement in C

of a single closed pqint, and let A be its coordinate ring (any
algebfaic curve, if not projective, is necessarily affine). Theorem
0.8 yields (0.2), and it is easy to check (0.1) using Riemann-Roch.

Apply Thecrem 0.3. Q.E.D.




1. Preliminaries.

We collect in this section some results about simplicial com-
plexes. Some of them are rather technical, so it seems advisable to

separate them from the rest of the proof.

DEFINITION: An ordered simplicial complex is a simplicial complex X
with a partial ordering x < x' of its set of vertices, Vert(X), which

makes each simplex totally ordered.

DEFINITION: Given ordered simplicial complexes X and Y, define
their product X X Y to be the ordered simplicial complex whose set of
vertices is Ehe partially ordered set Vert(X) x Vert(Y), and whose
simplices are all totally ordered sets of vertices whose projectioné

on X and on Y are simplices.

We use | | to denote geometric realization of a simplicial complex,

and we give products of CW-complexes the compactly ¢generated topology.

LEMMA 1.1: The natural map £: |X X Y| » |X| x |Y| is a homeomorphism.

Proof: Let A(m) denote the standard simplicial complex with vertices
{0 <¢1 (...< m} (every nonempty subset is a simplex). If X = A(m) and
Y = p(n), then £ 1is a homeomorphism [M]. Given simplices in X and
Y of dimensions m and n we have natural subcomplexes A(m) < X

and A(n) & Y which preserve the ordering, and thus a subcomplex

A(m) X A(n) ¢ X X ¥. The diagram:




[a(m) x a(n)| < [X x Y|
R
[am)] x [atm) | e [x] x |¥|

is cartesian. Since |X| x |Y| is covered by such products of simplices,

we see that £ is a homeomorphism; Q.E.D.

DEFINITION l1.2: Suppose £, g: X > Y are simplicial maps of simpli-
cial complexes, and X 1is ordered. We call £ and g adjacent

if, for each simplex ¢ of X and each X' € g, the set
{f(x) | xeocexx'} U {gx) | xec&x( x'}
is a simplex of Y.

COROLLARY 1.3: Suppose X is an ordered simplicial complex, and Y

is a simplicial complex. Adjacent simplicial maps from X to Y are

homotopic.

Proof: Adjacency is precisely the condition required to construct a

homotopy after applying (1.1) to X x A(l). '~ Q.E.D.

DEFINITION: Suppose the group % acts on a partially ordered set X.
It acts cofinally if for all x, x' € X, there is an n € Z with

X+ n> x'. We also reguire x + 1 > x for all x,

DEFINITION 1.4: Suppose Z acts cofinally on a partially ordered set
X. Let <X> denote the simplicial complex whose vertices are I - orbits
in X, and where a simplex is any finite nonempty set of vertices whose

union is a chain in X.




Identifying a g-simplex of <X> with its union, we may regard it
as a chain ... < x, < Xi+l'<"' in X (indexed by &) with
x, + 1 = x, for all i.

Let <x> denote the orbit x + Z. The proof of the following lemma

is easy.

LEMMA 1.5: Suppose X and Y are as in (1.4), and £f: X > Y is a

function such that

(i) for x < x' in X, £(x) £ £(x')

(ii) for x in X, f(x + 1) = £(x) + 1.

Then the map <H: & > <Y> defined by <£5(Kx>) = <f(x)> is a sim-

7

plicial map.

DEFINITION 1.6: If X is a Z-poset as in (1l.4), then an augmentation

is a map ¢: X » 2 satisfying the conditions of (l.5). Let XO denocte

the ordered simplicial complex with vertices Vert(Xo) = {x € X | e(x)=0]}

and whose g-simplices are all sets [xo,...,xq] of vertices which can
be indexed so that X, <ow ol xq < X, + 1.

Notice that the natural map X. = <X> is an isomorphism of sim-

0

plicial complexes; however, XO is ordered.

DEFINITION 1.7: If X and Y are as in (1.4), e¢: X > % is an aug-
mentation, and f£,g: X > Y are twomaps satisfying (l.5.i,ii), then we
say £ and g are adjacent‘if

(i) for x in X, £(x) < g(x), and

(ii) for x < x' in X with e(x)<¢(x'), we have g(x) < £(x').

LEMMA 1.8: If £ and g are adjacent maps_§§_ip (1.7), then <f>

and <g> are homotopic (i.e. their realizations are).




' Proof; We may compose <f> and <g> with XO 3 <X>, yielding <f>o and

numbered as in (1.6), then

<g>,. If {xo,...,xq} is a simplex of X,

e(xq) =01l = s(xo + 1), so by (1.7.ii) g(xq) £ f(x0 + 1), Given
i with 0 < i < g, we have f(xo) <oukX f(xi) < g(xi) <o X g(xq)
< f(xo) + 1, so <f>O and <g>O are adjacent maps of simplicial complexes

as in (1.2), and we may apply (1.3). Q.E.D.

This ends our discussion of these matters. We need one more re-
sult about nerves of coverings. Segal has recorded the result for

open coverings in [Se]--we need the same result for closed coverings.

LEMMA 1.9: Suppose X 4is a simplicial complex, T is a poset, and

~for each ¢ € T we are given a subcomplex Xc of X. Suppose the fol-

lowing properties hold.

(1) o< r implies X > X_

(ii) X = UX_ (i.e. every simplex of X is a simplex of some Xc)

[+
(1ii) each X is contractible

(iv) for each simplex y in X the poset TY = {0 | vy is 2 sim-

of Xc] is contractible.

F-'
[0]
~
th

Then X and T are homotopy equivalent in a natural way.

Proof: We follow ﬁhe notation of [Q4, p. 103-4]. dne checks that (i)
- (iv) remain true if .X and each Xc are replaced by their barycentric
subdivisions (poset of simplices); Thus we may assume W is a poset
and each Xq is a closed subset. Consider the incidence correspon-
‘denqe Z = {(x,0) € X XT | x ¢ Xc}; it is a closed subset of X x T.

Now [Q4, Corollary 1l.8] applies because for each ¢ € T, Zc = Xc is

contractible, and for each x ¢ X,-ZX = Tx is contractible. Q.E.D.




2. The Bruhat-Tits Building.

Fix a discrete valuation ring R, its fraction field F, a uni-
formizing parameter T, and an-F—vector space W of dimension n.

The group Gl (W) acts naturally on the poset L = L(W) of all R~
lattices in W. The group Z = FX/R>< acts naturally on L by homothety
so that L + n = n_nL,for L € L. This action is cofinal. The Bruhat-
fits building X = X(W) is defin;d’to be the simplicial complex <L>
introduced in (1.4). Since any lattice L has L/nL of length n, we
see that dim X = n - 1.

Since E(F) = %, an augmentation (1.6) ¢: E(W) > Z can be ocbtained
by choosing a surjective F-linear map W > F. Another augmentation
comes from the index: g¢(L) = f(ind(L,LO))/nl, where L. is a fixed

0

lattice. Here ind(L,L.) = length (L/Ll) ~ length (LO/Ll) for any lat-

0

tice Ll contained in 1L and LO.

THEOREM 2.1 [BT]: X 4is contractible.

+ Z be an augmentation. Fix A € L and for each n € Z

e

Proof: Let ¢:

define F:L~>PLby

F (L) =L + (- hyPte (@),

It is easy to see that Fn satisfies (l1.5.i,ii) and that Fn and Fn+l

are adjacent (1.7). Thus by (1.8) <Fn> and <Fn+l> are homotopic maps

from X to X. For L € L, we see that

<L> n << 0.
<Fn(L)> =
<A> n>> 0.




If £f: Z » |X] is a continuous map from a compact space %, then £(z)

is carried by a finite number of vertices of X, and thus

= f n< o
|<F >|-£
is constant n >> 0,
This shows that ni|X] = 0 for i > 0, and we conclude from a theorem
of Whitehead that |X| is contractible. | Q.E.D.

Note: Considering the unit interval as a two-point compactification
of R provides an explicit contraction of |X|, so the appeal to White-

head's theorem is not needed.

3. Stable vector bundles

In this section we review the basic facts abput stable vector
bundles on a nonsingular irreducible projective curve C over a field
k. Set also [NS, Section 4] and [HN, Section 1.3].

We do not require k to be algebraically closed. Let F = k(C)
be the function field of C.
| A vector bundle on C 1is a locally freé sheaf of oc-modules of
finite rank. Aﬁy gquasi-coherent subsheaf-El of a vector bundlen E ’is
also a vector bundle, and is called a subbundle if E/El is a vector
bundle.’ Given subbundles E. ¢ E, of E, it follows that Ey is also

1 2

a subbundle of E2.

If W' is an F-subspace of E ® F, then E N W' is a subbundle of

Ey if E' is a subbundle of E, then E' ® F is an F-subspace of E ® F.




These two operations set up a one-to-one correspondence between sub-
bundles E' of E and subspaces W' of E @ F.

« E is contained in a unique subbundle E, ¢ E

Every subsheaf E 1

1

of the same rank, namely, E, = E N (El ® F).

1
The slope of a nonzero vector bundle is defined to be w(E) =

(deg E)/(rank E). The additiviﬁy of degree and rank over short exact

sequences makes the term "slope" opposite because u(El/EZ) is the

slope of the line joining the points (in the rank-degree plane) cor-

responding to El and E2‘ We also have the formulas

b(E; ® Ey) = u(E)) + u(Ez)'

w(E)) = -4 (8).

1]

A vector bundle E is called stable (resp. semistable) if for
all nonzero subbundles El c E (or for all subsheaves) we have
‘p(El) < uw(E) (resp. < ). An unstable bundle is one which is not
semistable,

Stability can also be described in terms of quotient bundles of
E, because “(El) < w(B) Lff M(E/El) > u(E).

One sees that the degrees of subbundles-of E are bounded above

by intersecting a subbundle with a fixed flag 0 C E. e...c En = E of

1
subbundles with rank Ei = i. Thus the slopes of subbundles cf E are
discrete and bounded above, and there exist subbundles of maximum
slope. We let “max(E) denote the maximum slope of a_subbundle of E;

we let umin(E) denote the minimum slope of a quotient bundle of E.

We see that:

min max




LEMMA 3.1: Suppose E < E' are vector bundles of the same-rank{ Then

the following formulas hold.

(1) w(E) < u(E")
(B) <u___(E')

i1
(ii) Hmax max

(144) W . (B) < p_. (')

Proof: The first assertion follows directly from the additivity of
degree and the fact that deg(E'/E) > 0. Now if W' is a subspace of
E®F=E' @F, then ENW cE'NW and E/ENW < E'/E' N W', so

(i) yields (ii) and (iii). Q.E.D.

LEMMA 3.2: £ E; and E, are semistable vector bundles on C, and

Hom(El,Ez) # 0, then u(El) < p(EZ).

Proof: Given f: E. > E2 nonzero, it factors as a composite

1
El >> E3 c E3 c Ez, where E3 is a subbundle of E2. Then
b(E)) < p(By) < u(By) < ui(By). Q.E.D.

PROPOSITION 3.3 [HN]: A vector bundle E on C has a unique flag of

subbundles 0 = E0 < El<:..u< Er = E satisfying the following two pro-

perties.

(i) Ei/Ei—l is semistable for each i

(1) w(E;/E, ;) > w(E, ,/E;), for each i.

i+l

Moreover, this flag also satisfies

with slope equal

1

(iii) Ei/Ei—l is the largest subbundle of E/Ei_
=2 “méx(E/Ei)

(iidi') ‘Ei/Ei_l_ig the largest guotient bundle of E; with slope

equal to umin(Ei)'

Proof: The first assertion is exactly [HN, Lemmas 1.3.7,8] together




with the observation that the proof does not use their assumption that

k is algebraically closed. Now we show (iii): let E' be a subbundle

umax(E/Ei_l); it is enough to show that E' ¢ Ei'

of E/Ei—l with p(E') = ‘
Clearly E' is semistable and w(E') > “(Ej/Ej—l) for all 3 > i, using

(3.2) and descending induction we see that E' ¢ Ej- for all j > 1i.

1
This proves (iii), and (iii') follows by applying (1ii) to the dual

vector bundle of  E. ‘ Q.E.D.

We will call the flag El <...< E of E from the previous pro-

r-1

position the canonical_filtration of E. We let S(E) denote the cor-

respoﬁding flag E, ® F <...< E @ FinwW=E @ F, and will also call

1 r-1

it the canonical filtration of E.
The following corollary tells when S(E) can be deduced from the
canonical filtrations for a subbundle of E  and for the corresponding

guotient bundle.

is a subbundle of E, y

COROLLARY 3.4: Suppose E' is max

(E/E') < p‘min(El ):

E; <...< E_4 is the canonical filtration of E, and El/E' <onoK Es_l/E'

is the canonical filtration of E/E'. Then Ei <ouuX E;-l < E' KL

E. <...< E is the canonical filtration of E.

s-1
Now fix an invertible sheaf 6(l) on cC, and adbpt the usual nota-
tion: E(m) = E ® G(l)®m. We declare two vector bundles E, and E, to

be equivalent if for some m there is an isomorphism E e Ez(m), and

1
consider vector bundle classes,

We assume that G(l)ihas positive degree. It follows from the re-
presentability of the moduli space for semistable vector bundles that

there are only finitely many semistable vector bundle classes of rank

n; we will needfsomething slightly stronger, and we prove it directly.




Define “diff(E) = umax(E) - gmih(E), and notice that it depgnds

only on the class of E.

PROPOSITION 3.5: If k is a finite field, then given integers n

iy

and N, there are only finitely many vector bundle classes E with

rank E = n and “diff(E) < N. -

Proof: For each class we may choose a representative E with

g =1« umin(E) L g-1+ e (where e = deg ¢(1)) because “min(E(m))

= (E) + me. Thus (E) N+g=-1+e. ‘Every quotient bundle
B M nax <

min
E/E' has p(E/E') > brin > g - 1, so by the Riemann-Roch theorem E/E’
has a nonzero global section, and thus has a rank 1 subbundle with a

section. Using this fact and induction allows us to construct a flag

0 =FE. < B, <...& En = E with rank Ei = i and each Ei/Ei- being the

0 l ~ ~
line bundle of an effective divisor. It follows that deg Ei—l > 0,

1

and deg Ei/Ei-l = deg E, - deg E, 1 £ deg E, = iu(Ei) < numax(E)
£ n(N+g-1+e), Since there are only a finite number of points
on C of any given degree, we see that the line bundles Ei/Ei_l‘are
drawn from a finite set of isomorphism classes (a set depending only
on N ‘and n).

Extensions of bundles E' and E" are classgfied by the group
Extl(E",E') = Hl(C,E' ® E"V), which is a finite dimensional vector
. space over Kk, and thus is a finite set: Since E is built up by
successive extension from the linebundles Ei/Ei—l’ we seé that, up to

isomorphism, there are only a finite number of possibilities for E.

Q.E.D.

Remark: E is semistable iff udiff(E) < 0 iff udiff(E) = 0.




4. Stability and the Building.

We preserve the notation C, k, and F from the previous section.

Let «o be a closed point of C. The open set U= C - » is affine, so

let A be its coordinate ring. Let R = OC o be the local ring at o,
’ 2

and choose a uniformizing parameter 1w for R.

Let P be a finitely generated A-module, W = P ®A F, n = dim_ W,

F
and T = Aut(P) <« GL(W). Let W be the constant sheaf on C associated

to W. Let (1) = @3(x).
 DEFINITION: E(P) denotes the poset of all cocherent locally free sub-

sheaves E of W such that E‘U = P. Let Z act on E(P) via

Notice that T acts naturally on E(P).
If L € L(W) (see section 2), then there is a unique vector bundle

E(P,L) € E(P) such that E(P,L L. Thus we have an isomorphism

)'Spec R

which is order preserving, I-equivariant, and Z-equivariant. We de-
fine X = X(P) = <§(P)>; it is isomorphic to X (W), the building defined
in section 2.
‘ The Tits buildincj is‘the poset of subspaces W' c W witl;
0 # W' # W. We use Simpl to denote the poset of chains (simplices)
of [W].
The Canonical'filtration of Sectién 3 defines a I-equivariant

function

S: Vert X(P) — Simpl [W] U {e])




<E> t+—> S(E),
because S(E(m)) = S(E).

DEFINITION: Given ¢ € Simpl (W] U {p]) let E(P)c = {E € E(P) | ¢ « S(E)}
and let Xc = X(P)s = <E(P)c>' (Notice that 2% acts on E(P)c, too,

because S(E(m)) = S(E)). Let X' = U X
) o# ¢

Notice that the vertices of X - X' are those (E) with E being

a semistable vector bundle.

THEOREM 4.1: Each X, is contractible.

. c p—3 =
Proof: Say {WO Koo & Wé}' Let T {wl/wO Kool Wq/WO], and let
By induction on cardinality of ¢ we may assume that
X(P/PO)T is contractible, the case when 7 = ¢ being Theorem 2.1.

There is a natural map

defined by a(E) = E/E N W.; this map satisfies (1.5.i,ii), and has a

o
section, which we proceed now to define.
Choose EO € E(Po) so that “minEO > 0, and choose a splitting

P == PO ® P/PO.

Define, for any vector bundle E', an integer ¢ (E') = ((umaXE')/é];
. here e = [k(»):k]. In this way we get augmentations (see (1.6))
e:‘E(P) > % and ¢: E(P/Po) > T,

Define B: E(P/Py), > E(P) by setting B(E') = Ej(c(E')) ® E';

the splitting we chose for P tells how to regard B(E') as a subsheaf

of W. The map B satisfies (1.5.i,1ii).

Let's check that the target of B 1is as claimed, soO suppose




T S(E')--we must show ¢ ¢ S(B(E')). We use (3.4) and compute

bosn (€(ET) N W) ‘umin(Eo(e(E')))

“min(Eo) + e.¢(E')

'
> w maxE

b (B(EN)/B(E') N W,).

Now it is also clear that a.p = 1.

Define for each n € T a map Gn: E(P)g > _E(P)c by setting
Gn(E) =E + Eo(n + ¢(E)); it is order preserving and Z-equivariant
(1.5). We check now that the target of Gn is as claimed, so suppose

c cS(E)--we show ¢ C S(Gn(E)). Firstly, letting G = Gn(E),

> .,ENW

G/G NW nin 0

= E/E N W, and G N W, 2 E N Wy- Thus “minG nw

xG/G N WO' Now use (3.4).

0 0

> xE/E N W, =

ma K ma

It is easy to check that Gn and Gn+ are adjacent (1.7), and thus

1
<Gn> and <Gn+l> are homotopic (1.8). Notice that dGn = @. For any

E € E(P)c we see that
E n<<o
Gn(E) =
Gnﬁa(E) n >> Q .

We use Gn just as Fn was used in the proof of (2.1). Let £: Z ~> |X(P) l
o

be any map from a compact space 2. Since f£(Z) is carried by a finite

number of vertices, we see that

| [<G >| e [<B>||<a>].£ n>> 0
|<6 >| £ = |
£ n << 0.




Thus £ and [<B>|.|<a>|.f are homotopic. Since X(W/WO)T is contrac-
tible by induction, we see that !<a>[,f is null-homotopic, and thus

f 1is, too. This shows that X(P)c is contractible, Q.E.D.

COROLLARY 4.2: There is a I'-equivariant homotopy equivalence

x| = @

Proof: We apply (1.9) with X = X', X = X (P)

g and T = .Simpl@. Pro-
perty (1.9.iv) holds because TY = {0 | 0 « S(E) for each vertex <E> of v}

has a maximal element, namely, N S(E), and is thus contractible. Now

use the natural homotopy equivalence between [W| and Simpl{W]. Q.E.D.

THEOREM 4.3: There are only a finite number of TI'-orbits of simplices

in X - X'.

Proof: Notice that a simplex £ of X - X' may have none of its ver-
tices in X - X'; it is enough that its vertices are not all in the same
Xc; Since any two vertices of a simplex are adjacent, we see that each

vertex <E> of ®# 'has the property

(*) - for any W' € S(E), there is a vertex <E'> adjacent to

<E> with W' £ S(E').

Forgetting &, it will be enough to show there are, mod T, only finitely
many such vertices <E>.

With W' and E' as in (*), we may assume E < E' c‘E(l), and compute
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<w, ((B/E N W) (1))

] . .
p,maxE/E nw + e.

Here e = [k(w):k]. Thus each slope change in the canonicalfiltration

of E 1is not more than e, so E satisfies

“max(E) < umin(E) + e(n - 1).

Two vertices <El> and <E2> are in the same T-orbit iff E, = Ez(m) for

1
some m; we conclude by applying‘(3.5). o Q.E.D.

5. Homology Computations.

We preserve the notation from section 4. Let n = dim W; we have

the following theorem of Solomon and Tits.

£f n> 2, then has the homotopy type of a bou-

THEOREM 5.1 [Q2]:

guet of (n-2)-spheres.

The Steinberg module, st(W), is ﬁn_z([:],z) together with the
natural action of Gl(W) on it. Por n = 1, st(wW) is i with Gl (W)
écting,trivially. For n > 1, we see that st(W) = Hn_l(sﬁi]), where

S denotes suspension.

We are now in a position to prove the main theorem from the

introduction.

Proof of Theorem 0.8: If x = <E> is a vertex of X = X(P), and FX is

the stabilizer, then it is easy to see that I = Aut(E); this group

is finite because it is contained in the finite dimensional k-vector




space End(E) = HO(C,E & Ev).

By Theorem 4.3, there are only a finite nuﬁber of I'—-orbits of
vertices occurring in simplices of X - X'. The group TI' = AutA(P) is
residually finitel because all nontrivial quotient rings of A - are
finite;vso we may find a normal subgroup r'd r of finite index which
acts freely on the simplices of X - X',

Suppose now that n > 2. For the relative homology we ;bmbine

(4.2) and (2.1) to get

H, (x,x') = #, (s[W]) =
st (W) i=n-1.

Let cq = cq(x,x‘) be the group of relative chains (isomorphic to the
free abelian group on g-simplices of X - X'). Since X has dimension

n - 1, the homology computation yields an exact sequence of TI'—modules.

0——->st(W)—-—-’Cn —_—,,, = O ——= (],

-1 0

Since each Cq is a finitely generated free ZT'-module we see that st (W)

is a finitely generated projective ZI''-module, so

0 i#o0
H, (I, st(W))

Z i = 0, some a,.

In particular, Hi(F',st(W)) is finitely generated for all 1i. Now the

spectral sequence

lA group T is called residually finite if every nontrivial element of
I' maps nontrivially to some finite quotient group of T.




Hp(r/r',Hq(r',st(w)) :>. Hp+q(r,st(W)>

and the fact that /"' is finite yield the finite generation of

Hi(F,st(W)) for all i.

The case when n = 1 is trivial because then I = Gll(A) = A>< is a
finite group. Q.E.D.
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