Introduction

Formalizing the theorems and proofs of modern mathematics is
important, because it can certify our knowledge and help us
develop new proofs. Certificates of correctness for computer
programs are examples of proofs, verification of code is an
important application. I'd like to describe some recent
advances in which many people are participating.

Modern mathematics has been based, in principle, on “set
theory” since its axioms were stated in 1922. In that theory,
there are two types of things: the sets and the propositions
about sets.

Grayson Computers and mathematical proofs



A competing foundation for mathematics is “type theory”, under
development since 1908, offers various advantages:

@ the types of mathematical objects are more meaningful
(e.g., 3, instead of being a set, is a natural number);

@ it comes with a completely specified formal language for
expressing mathematical statements and their proofs;

@ writing a proof (or defining a function) is the same as
coding the body of a subroutine (or method) and certifying
that it computes the right thing

@ programmers are accustomed to declaring the types of
their variables (in languages such as C, ML, Haskell, etc.)

Grayson Computers and mathematical proofs



Giuseppe Peano, in 1889, formulated precise axioms for the
natural numbers: that 0 is one, that each one has a
“successor”, and that during a proof, a variable x of type natural
number can be dealt with by assuming it is either 0 or the
successor of something. (Compare with case in Ruby.) These
axioms can be expressed compactly in type theory.

Martin-Lo6f, in 1975, saw that the notion of equality (x = y)
could be similarly formulated in type theory — a variable p
representing a proof that x = y (where y is also a variable) can
be dealt with in code by assuming it is the trivial proof of x = x
(and that y is x).

Grayson Computers and mathematical proofs



Voevodsky, in 2004 and 2009, figured how to deal with possible
inequality of two proofs of the same equality (!) in a sensible
way, and introduced his Univalence Axiom. Beneficial
outcomes:

@ implementation details are hidden

@ transportation of proofs from one situation to an equivalent
situation (reusability of code)

@ sensible definitions of “set” and “proposition” are given,
merging logic with set theory seamlessly

@ a new, more fundamental, mathematical world (of types
that are not sets) is revealed

Grayson Computers and mathematical proofs



Some Homotopy Type Theory links:

@ these slides: http://dangrayson.com/Lectures/
@ the web site: http://homotopytypetheory.org/
@ the blog: http://homotopytypetheory.org/blog/
@ the book: http://homotopytypetheory.org/book/

@ code (proofs) under development based on Voevodsky’s
foundations: https://github.com/UniMath/UniMath

@ another development based on the same ideas:
https://github.com/HoTT/HoTT

@ the paper I'm working to check the proofs of:
http://arxiv.org/abs/1310.8644

@ aresearch grant: http:/bit.ly/104Jae7
@ CACM article: http://bit.ly/1mL8XXA

Grayson Computers and mathematical proofs


http://dangrayson.com/Lectures/
http://homotopytypetheory.org/
http://homotopytypetheory.org/blog/
http://homotopytypetheory.org/book/
https://github.com/UniMath/UniMath
https://github.com/HoTT/HoTT
http://arxiv.org/abs/1310.8644
http://bit.ly/1o4Jae7
http://bit.ly/1mL8XXA

