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The purpose of this paper is to develop a higher K-theory for additive categories
with exact sequences which extends the existing theory of the Grothendieck group in a
natural way. To describe the approach taken here, let M be an additive category
embedded as a full subcategory of an abelian category A-, and assume M is closed under

extensions in A . Then one can form a new category Q(M) having the same objects as M ,
with a
and M/M1

to M 1is taken to be an isomorphism of M'
such that M

but in which a morphism from M'
of M, where M c: M
are objects of M . Assuming the 1somorphxsm classes of objects of H form 2 set, the
category Q(Q) has a classifying space BQ(Q) determined up to homotopy equivalence.

One can show that the fundamental group of this classifying space is canonically isomor-
phic to the Grothendieck group of § , which motivates defining a sequence of K-groups by

subquotient M /M are subobjects of M

the formula
k() = m  (8QM),0) .
It is the goal of the present paper to show that this definition leads to an interesting

theory.
The first part of the paper is concerned with the general theory of these K-groups.

Section 1 contains various tools for working with the classxfjlng space of a small

category. It concludes with an important result which 1dent1f1es ‘the homotopy~theoretic

fibre of the map of classifying spaces induced by a functor. In K-theory this is used
to obtain long exact sequences of K-groups from the ezact homotopy sequence of a map.
Section 2 is devoted to the definition of the K-groups and their elementary proper=-
ties. One notes that the category Q(M) depends only on M and the family of those
short sequences O —» M' —> M —» M" —> 0 in E which are_exact in the ambient abelian
category. In order to have an intrinsic object of study, it is convenient to introduce
the notion of an exact category, which is an additive category equipped with a family of
short sequences satisfying some standard conditions (essentially those axiomatized in
[ He1zer]).
of K-groups K (M) varying functorially with respect to exact functors. Section 2 also
It should

For an exact category M with a set of isomorphism classes one has a sequence
contains the proof that K (M) is isomorphic to the Grothendieck group of M
be mentioned, however, that there are examples due to Gersten and Murthy showing that in
general K (M) is not the same as the universsl determinant group of Bass.
The next three sections contain four basic results which might be called the

exactness, resolution, devissage, and localization theorems. Each of these generalizes
a well-known result for the Grothendieck group ([Bass, Ch. VIII]), and, as will be
apparent from the rest of the paper, they enable one to do & lot of K-theory.

The second part of the paper is concerned with applications of the general theory to

rings and schemes. Given a ring (resp., a noetherian ring) 4 , one defines the groups

*Supported in part by the National Science Foundatiof.
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Ki(A) (resp. K{(A) ) to be the K-groups of the category of finitely generated projec—
tive A-modules (resp. the abelian category of finitely generated A-modules). There is a
canonical map Ki(A) - K (A) which is an isomorphism for A regular by the resolution
theorem. Because the devissage and localization theorems apply only to abelian categories,
the interesting results concern the groups Ki(A) . In section 6 we prove the formulas

KW o= kGl L galsD = gwex W

for A noetherian, which entail the corresponding results for K-groups when A4 is
regular. The first formula is proved more generally for a class of rings with increasing
filtration, including some interesting non-commutative rings such as universal enveloping
algebras., To illustrate the generality, the K-groups of certain skew fields are computed.

For a scheme (resp. noetherian) scheme X, the groups Ki(X) (resp. Ki(X) ) are
defined using the category of vectér bundles (resp. coherent sheaves) on X, and there is
~ a canonical map »!(i(X) P K{(X) which is an isomorphism for X regular. Section 7 is
devoted to the X'-theory. Especially interesting is a spectral sequence

- | K (60) = K ()
cod(x) =p
obtained by filtering the category of coherent sheaves according to the codimension of the
support, In.the case where X is regular and of finite type over a field, we carry out a
program proposed by Gersten at this conference ([Gersten 3]), which leads to a proof of

Bloeh's Tormila
Px) = P
) = B&, k(o)

proved by Bloch in particular cases ([Bloch]), where AP(X) is the group of codimension
P cycles modulo linear equivalence. One noteworthy feature of this formula is that the
right side is clearly contravariant in X, which suggests rather strongly that higher
K-theory might eventually provide a theory of the Chow ring for non-quasi-projective
regular varieties.

Section 8 contains the computation of the K-groups of the projective bundle
associated to a vector bundle over a scheme. This result generalizes the computation of
the Grothendieck groups given in [SGA 6], and it may be viewed as a first step toward a
higher K-theory for schemes, as opposed to the K'~theory of the preceding section. The
proof, different from the one in [SGA 6], is based on the existence of canonical
resolutions for regular. sheaves on projective space, which may be of some independent
interest, The method also permits one to determine the K-groups of a Severi-Brauer

scheme in terms of the K-groups of the associated Azumaya algebra and its powers.

This paper contains proofs of all of the results announced in [Quillen 1], except for
Theorem 1 of that paper, which asserts that the groups K, (4) here agree with those
obtained by making BGL(A) into an H-space (see [Gersten 5]). From a logical point of
view, this theorem should have preceded the second part of the present paper, since it is
used there a few times. However, I recently discovered that the ideas involved its proof

could be applied to prove the expected generalization of the localization theorem and
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fundamental theorem for non-regular rings [Bass, p.494,663]. These results will appear

in the next installment of this theory.
The proofs of Theorems A and B given in section 1 owe a great deal to conversations

with Graeme Segal, to whom I am very grateful. One can derive these results in at least
two other ways, using cchomology and the Whitehead theorem as in [Friedla.uder , and also
by means of the theory of minimal fibrations of simplicial sets. The present approach,
based on the Dold-Thom theory of quasi-fibrations, is quite a bit shorter than the others,
although it is not as clear as I would have liked, since the main points are in the
references. Someday.these ideas will undoubtedly be incorporated into a general homotopy

theory for topoi.
This paper was prepared with the editor's encouragement during the first two months

3 t
of 1973. I mention this bscause the results in §7 on Geraten's conjecture and Bloch's
formula, which were discovered at this time, directly affect the papers [Gersten 3, 4]

and [Bloch] in this procedings, which were prepared earlier.
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§1. The classifying space of a small category

In the succeeding sections of this paper K-groups will be defined as the homotopy

groups of the classifying space of a certain small category. In this rather long section

we collect together the various facts about the classifying space functor we will need.

411 of these are fairly well-known, except for the important Theorem B which identifies

the homotopy-fibre of the map of classifying spaces induced by a functor under suitable

conditions. It will later be used to derive long exact sequences in K-theory from the

homotopy exact sequence of a map.

Let C be a small category. Its nerve, denoted NC , is the (semi-)simplicial set

whose p-simplices are the diagrams in ¢ of the form
xo —>x1 — e -—?Xp .
The i-th face (resp. degeneracy) of this simplex is obtained by deleting the object Xi
—»Xi) in the evident way. The classifying space of g,

(resp. replacing X, by id X,
denoted Bg, is the geometric realization of NC= . It is a CW complex whose p-cells are

-ong correspondence with the p-simplices of the nerve which are nondeg
(See [Segsl 1], [Milnor 13.)
ded as a category in the usual

in one enerate, i.e.
such that none of the arrows is an identity map.

For example, let J be a (partially) ordered set regar

Then BJ is the simplicial complex (with the weak topology) whose vertices are the

way.
otally ordered non-emply finite subsets of J.

elements of J and whose simplicés are the t
Conversely, if K is a simplicial complex and if J is the ordered set of simplices of
K, then the simplicial complex BJ 1is the barycentric subdivision of K. Thus every

simplicial complex (with the weak topology) is homeomorphic to the classifying space of
Furthermore, since it is known that any CW complex

it follows that any interesting homotopy
(1 am grateful to Graeme

some, and in fact many, ordered sets.
is homotopy equivalent to a simplicial complex,
type is realized as the classifying space of an ordered set.
Segal for bringing these remarks to my attention.)

As another example, let a group G be regard
usual way. Then BG is a classifying space for the discrete group G in the traditional

g-Maclane space of type k(G,1), so few homotopy types occur in

ed as a category with one object in the

sense. It is an Eilenver
this way.

Let X be an object of g
K, we have a family of homotopy groups
groups of C with basepoint X and denoted simply w,(C,X).
a group, but a pointed set, which can be described as the set
category g pointed by the component containing X. In effect, connected components of

BC are in one-one correspondence with components of C.
(g X) and also the homology groups of BC can be defined

We will see below that m
#glgebraically" without the use of spaces or some closely related machine such as semi-
The existence of

gimplicial homotopy theory, or simplicial complexes and subdivision.
s of the higher homotopy groups seems to be unlikely,

Using X to denote also the corresponding O-cell of
ﬂi(Bg ,X), 420, which will be called the homotopy
Of course, n'o(g,X) is not

n-og of components of the

similar description because so far
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nobody has produced an "algebraic" definition of the homotopy groups of a simplicial
complex.

Covex‘y_xg’ s _of K=7 and the fundamental group.

Let E be a covering space of HC. For any object X of C, let E(X) denote the
fibre of E over X considered as a O-cell of B. If uv:iX-—» )-{"
determines a path from X to X' in BC, and hence gives rise to a bijection E{u): B(X)
3 E(X'). It is easy to see that E(fg) = E(£)E(g), hence in this way we obtain s functor
X ¢ BE(X) from € to Sets which is morphisu-inverting, that is, it carries arrows into
isomorphisms,

Conversely, given F : C —» Sets, let F\g denote the category of pairs (X,x)
with X 4in C and x€ F(X), in which a morphism (X,x) = (X',x') is amap u : XX’
such that F(u)x = x'. The forgetful functor F\g -» ¢ ‘induces a map of classifying
spaces B(F\ g) —» B having the fibre F(X) over X for each object X. Using
[Gabriel-Zisman, App.I, 3.2] it is not difficult to see that when F is morphism-inver-
ting, the map B(F\g)—»Bg is locally trivial, and hence B(F\g) is a covering space
of K=J. It is clear that the two procedures just described are inverse to each other,

is a map in C, it

whence we have an equivalence of categories

(Coverings of Bg‘)b 22 (Morph.-inv, F : - Sets)

where the latter denotes the full subcategory of F‘unct(g, Sets), the category of functors
from g to _Sets, consisting of the morphism-~inverting functors.

Lat.

Let

—2m==—r(_r_§~[(-A-:g):j—,]wmdenotemthe'fgroupoi&-’obtai;ned-"from -C ~by formally adjoining
the inverses of all the arrows [Gabriel-Zisman, I, 1.1] + The canonical functor from

no

to 2 induces an equivalence of categories
Funct(G, Sets) (Morph.-inv. F : ¢ — Sets)
(1;«:.&;., I, 1.2), Let X %be an object of g and let GX be the group of its auto-

morphisms as an object of G. When C is connected, the inclusion functor GX -G is

an equivalence of categories, hence one has an equivalence
E‘unct(g, Sets) = F‘unct(Gx, Sets) = (Gx—sets).

Therefore by combining the above equivalences, we obtain an equivalence of categories of
the category of coverings of R!= with the category of Gx—sets given by the functor
E > E(X). By the theory of covering spaces this implies that there is a canonical iso-
morphism: m ((=2 X)) = Gx. The same conclusion holds when (=: is not connected, as both
"groups depend only on the component of g_ containing X, Thus we have established the
following.

Proposition 1. The category of covering spaces of BC is canonically equivalent to
the category of morphism-inverting functors F

: (=} —+ Sets, or what amounts to the same
thing, the category Funct(G, Sets), where § =¢ [(Az(_}__)"_] is the groupoid obtained by
formally inverting the arrows of C. The fundamental group =, (¢,X) is canonically

isomorphic to the group of automorphisms of X as an object of the groupcid G.

It follows in particular that a local coefficient system L of abelian groups on I
may be identified with the morphism-inverting functor X e L(X) from C to abelian groups.
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The homology of BC

It is well-known that the homology and cohomology of the classifying space of a dis~-

crete group coincide with the homology and cohomology of the group in the sense of homo-

i 11
logical algebra. We now describe the generalization of this fact for an arbitrary sma

category.
Let A be a functor from C to Ab, the category of abelian groups, and let

homology of the simplicial abelian group

e g = AL ax)

Xvo o

HP(C,A) denote the

of chains on NC with coefficients in A. (By the homology we mean the homology of the

associated normalized chain complex.) Then there are canonical isomorphisas

c
Hy(C,4) = lig o) »
denotes the left derived functors of the right exact functor lim from
(c,A) is an exact ¥-functor
g (See

where 1_13 %

Funct(C,Ab) %o Ab. This is proved by showing that A > H,
. ble in positive degrees,
which coincides with & ixi degree zero and is effacea p
[cabriel-Zisman, App.II, 3.3 .) . .
let H.(BC,L) denote the singular homology of BC with coefficients in a local
* =
coefficient system L. Then there are canonical isomorphisms
B (3,0 = B(C.L) .
- where we-identify -L- Sith a morphism-inverting functor as above. This may be proved by

filtering the CW complex BC by means of its skeleta and considering the associated

1 -
spectral sequence. One has E1 =0 for ¢q#0 and E_ = the normalized chain com:

%0
&
plex associated to C,{C ,L). (Compare [Segal 1, 5.1].) The spectral sequence degenerates
A
yielding the desired isomorphism.

Thus we have ¢
(1) un (1)
and similarly we have a canonical isomorphism for cohomology
(2 #P(pg,L) =

from
where lim; denotes the right derived functors of the left exact functor lim
9% «—

B (BG,L) =
<1_i_m§(b)

Funct(C,Ab) to Ab.

Progerties of the classifying space functor.

From now on we use the letters 9_.! g', etc.

to denote small categories. If
In this way we
ry of CW

As a particu-

£ :C -»C' is a functor, it induces a cellular map Bf : Bg —»Bg'.
obta:n a -f-aithful functor from the category of small categories to the catego
This functor is of course not fully fajthful.

lexes and cellular maps.
et anonical cellular homeo—

larly interesting example, we note that there is an obvious c

morphism
° -~
(3) K = B :
where C° is th: dual category, which is not realized by a functor from C= to (;
z

except in very special cases, e.g. groups.
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By the compatibility of geometric realization with products [Milnor 1] , one knows
that the canonical map '
(4) B(CxC') — B xEC
is a homeomorphism if either B(=J or BC! is a finite complex, and aglso if the
product is given the compactly generated topology. As pointed out in [Segal 1], this
implies the following.

Proposition 2. A natural transformation 6 : f -3 g of functors from C to C°'

induces a homotopy B(=2 I — Bg' between Bf and Bg.

In effect, the triple (f,g,8) can be viewed_;:a functor C x 1 ==» C', where 1
is the ordered set {0< 1} , and B1 is the unit interval. ) B

We will say that a functor is a homotopy equivalence if it induces a homotopy equi-
valence of classifying spaces, and that a category is contractible if its classifying
space is.

Corollary 1. If a functor f has either a left or a right adjoint, then f is a
homotopy equivalence.

For if f* 4is say left adjoint to  f, then there are natural transformations

£'f - id, id —~» ff', whence Bf' is a homotopy inverse for Bf.
Corollary 2. A category having either an initial or a final object is contractible,
For then the functor from the category to the punctual category has an adjoint.

Let I be a small category which is filtering (= non-empty + directed [Bass, p.41])

and let 1ip»C j bea functor fron I to small categories. Let C be the inductive
limit of the gi; because filtered inductive limits commute with finite projective limits,
we have 0b(=7 = 1_.12 Obc___i. Arg_ = l_i_u;Azgi, and more generally Ng = Linlﬂgi . Let xis
()’b(;1 be a family of objects such that for every arrow i —»i' in I, the induced
functor 21 —)gi, carries Xi to Xi' , whence we have an inductive system nn(Ci,X )
indexed by I. Ho '

Proposition 3. If X is the common image of the Xi in C, then

1xoposition A2 e 2220

un m(C,,X) = =(C,X).

Proof. i

00 Because I is filtering and Ng = 1_i£ Ng i it follows that any simplicial
subset of Ng with a finite number of nondegenerate simplices 1lifts to NC. for some

=i

i, and moreover the lifting is unique up to enlarging the index i in the evident sense.
As every compact subset of a CW complex is contained in a finite subcomplex, we see that
every compact subset of BC lifts to Bgi for some i, uniquely up to enlarging i. The
proposition follows easily from this.

Corollary 1. Suppose in addition that for every arrow i -» i' in I the induced

functor C Pl gi' is a homotopy equivalencae. Then the functor C 1 ~»C is a homotopy

equivalence for each i.

Proof. Replacing I by the cofinal category i\I of objects under i, we can
suppose i is the initial object of I. It then follows from the proposition that the
map of CW complexes Egi -> Bg induces isomorphisms on homotopy. Hence it is a
homotopy equivalence by a well-known theorem of Whitehead.
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Corollary 2. Any filtering category is contractible.
In effect, I is the inductive limit of the funmctor 1 > I/i , and the category

I/i of objects over i has a final object, hence is contractible.

Sufficient conditions for a functor to be a homotopy equivalence.

Let f @ g -;g_:',be a functor and denote objects of 2 vy X, X', etc. and objects of
¢' by 1, ¥, ete. If Y is a fixed object of g', let Y\f denote the category con-
;isting of pairs (X,v) with v: Y - fX, in which a morphism from (X,v) to x,v')
is amap w3 X —X' such that f(w)v = v'. In particular, when £ is the identity
functor of (=: ', we obtain the category Y\ ¢ t  of objects under Y. Similarly one defines

the category f£/Y consisting of pairs (X,u) with u: fX =Y.
Theorem A. If the category I\f is contractible for every object Y of C’) then

the functor f is a homotopy equivalence.
In view of (3), this result admits a dusl formulation to the effect that f is a

homotopy equivalence when all of the categories £/Y are contractible.

Example. Let g : K = K' Ye a simplicial map of simplicial complexes, and let
£:J —»J' be the induced map of ordered sets of simplices in K and K', so that g
is homeomorphic to Bf. If & denotes the element of J' corresponding to a simplex ©

of K', then £/F is the ordered set of simplices in g 1(a-). In this situation the
theorem says that a simplicial map is a homotopy equivalence when the inverse image of

“‘Before proving the theoréd we derivea corollary:
fibred and cofibred categories [SGA 1, Exp. VI] in a suit
the fibre of f over Y, that is, the subcategory of g whose arrows are those mapped to

the identity of Y by f. It is easily seen that f makes C a refibred category over
the functor

able form. Let £ '(Y) denote

¢' in the sense of loc.cit. if and only if for every object Y of C'
1Y) - T\E , X (X, 1dy)
has a right adjoint. Denoting the adjoint Iy (X,v) #=p v"X, we obtain for any map
viY~ Y afunctor
v (1) — ()
determined up to canonical iscmorphism, called base-change by V. The prefibred category
g over g ' is a fibred category if for every pair u,v of composable arrows in 9, ', the
canonical morphism of functors ukvé — (vu)* is an isomorphism. We will call such
functors f prefibred and fibred respactively.

Dually, f makes C intoa grecofibred category over g ' when the functors
f-1(Y) Z»£/1 have left adjoints (X,v) b> v, k. In this case the functor v,! f-1(Y) —

¢! (Y') induced by v : ¥ ~»Y' is called cobase-change by v, and C isa cofibred

category when (vu) .« S v, for all composable wu,v. Such functors f will be called

precofibred and cofibred respectively. .
Corollary. Suppose that f 1is either prefibred or precofibred, and that £7(Y) is

contractible for every Y. Then f isa homotopy equivalence.

This follows from Prop. 2, Cor. 1.
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Example. Let S(g) be the category whose objects are the arrows of C , and in
vhich a morphism from w : X =»Y to u': X' = Y' is a pair v : X* —-)X? wiY Y
such that u' = wuv. (Thus S(C) is the cofibred category over COXC with discrete
fibres defined by the functor (X,Y) > Hom(X,Y).) One has fu.ncto;s -

2 s(g) —%

Co &

>¢
given by source and target, and it is easy to see that these functors are cofibred. The
categories s (x) = X\g and ¢ (Y) = ((=!/Y)° have initial objects, hence are contrac-
tible. Therefore s and % are homotopy equivalences by the corollary. This construc-
tion provides the simplest way of realizing by means of functors the homotopy equivalence
(3).

We now turn to the proof of Theorem A. We will need a standard fact about the
realization of bisimplicial spaces which we now derive.

Let g be the category of ordered sets p ={0<I< 4 p} y PEN, 30 that by
definition simplicial objects are functors with domain Oédo. The realization functor

(hx) > [pb> x|
from simplicial spaces to spaces ([Segal 1]) may be defined as the functor left adjoint
to the functor which associates to a space Y the simplicial space p » Hom( Ap. Y),

where Hom denotes function space and Ap is the simplex having p as its set of
vertices. In particular the reamlization functor commutes with inductive limits.

Let " T p,q qu Ye a4 Bisimplicial space, i.¢, & filictor from  Q¥rdox0rd® T

to spaces. Realizing with respect to gq keeping p fixed, we obtain a simplicial space
| X d lq}-) qu' which may then be realized with respect to p . Also, we may realize
first in the p-direction and then in the q-direction, or we may realize the diagonal
simplicial space pb—»'l‘pp « It is well-lmown (e.g. [Tomehave] ) that these three
procedures yield the same result:

Lemma. There are homeomorphisms

T = =
|p > ppl ]pbquTm“ 'ﬂ»lpl—)'l‘pqll
which are functorial in the simplicial space T.

Proof. Suppose first that T is of the form

s

B xS: (p,q) b= Hom(p,r) x Hom(q,s) x S

where S is a given space. Then

Ipl—-) Hom(p,*) x Hon(p,s) x Sl = AT A%xs.
(This is the basic homeomorphism used to prove that geometric realization commutes with
products [Milnor 1].) On the other hand, we have

| o+ | @ +> Hon(p,r) x Hon(q,s) x S”

= ,pi—)Hom(p,r) s A%x Sl = ATxA¥xs

and similarly for the double realization taken in the other order. Thus the required
functorial homecmorphisms exist on the full subcategory of bisimplicial spaces of this
form.
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But any T has a canonical presentation

n*'%'y T, —% _LLh“x T, — T
(z,8)=>(x',n') (z,8)
which is exact in the sense that the right arrow is the cokernel of the pair of arrows.
Since the three functors from bisimplicial spaces to spaces under consideration commute
with inductive limits , the lemma follows.

Proof of Theorem A. Let S(f) be the category whose objects are triples (x,1,v)
with X an object of g and v: Y~ fX amapin 2', and in which a morphism from
(x,Y,v) to (X',Y',v') is a pair of arrows u : X —=» X', w : ' =»¥ such that
vt = f(u)vw. (Thus S(f) 4s the cofibredcategory over C x C'C defined by the functor
(X,Y) > Hom(Y,fX).) We have functors

Py

P
c'o ¢ s(£) !

> <
given by pT(x,!,v) = X, pz(x,y,v) =Y,
Let T(f) be the bisimplicial set such that an element of '1‘(f)pq is a pair of
diagrams
> eve X
(rp-y...-—;ro-»fxo,xo—, — q)

in C' and C respectively, and such that the i-th face in the p~(resp. g-)direction
= = N
deletes the object Yi (resp Xi) in the obvious way. Forgetting the first component gives

ssp of bisimplicial sets
(%) T('f)pq — N,

where the latter is constant in the p-direction. Since the diagonal simplicial set of
T(f) 4is the nerve of the category S(f), it is clear that the realization of (*) 1is the
map Bp, ! BS(f) —» EC . (By the realization of a bisimplicial set we mean the space
described in the above lemma, where the bisimplicial set is regarded as a bisimplicial
space in the obvious way.) On the other hand, realizing (*) with respect to p gives

a map of simplicial spaces
_LL a(g'/fxo)° —_— _LL pt = Ng_q
Xo-ﬁ. .—)Xq Xo—b . .—’xq

which is a homotopy equivalence for each q because the category § '/on has a final
object. Applying a basic result of May and Tornehave {[Tornehave, 4.3] ), or the lemma
below (Th. B), we see the realization of (*) is a homotopy equivalence. Thus the
functor Py is a homotopy equivalence.

Similarly there is a map of bisimplicial sets T(f)Pq - N(SJ__ ""’)p whose realization
is the map Bp, : BS(f) —>» BC'® .. Realizing with respect to g, we obtain a map of
simplicial spaces

(o AL sy — L
P )

pt = N('O),
oote=Y

Y°<—..i-Y -— °

which is a homotopy eguivalence for each p, because the categories Y\f are contrac-

tible by hypothesis. Thus we conclude that the functor p2 is a homotopy equivalence.
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But we have a commutative diagram of categories

P
C10 e—2m 5(f)

»C
I |« I
g0 2 sliay,) —1n

where £'(X,Y,v) = (£X,Y,v)., The horizontal arrows are homotopy equivalences by what has
been proved, (mote that Y\idc. = Y\g ' is contractible as it has an initial object).

Thus f is a homotopy equivalence, whence the theorem.

The exact homotopy sequence.
let g: E -+ B be a map of topological spaces and let b be a point of B, The

homotopy~-fibre of f over b 1is the space
I
Flg,b) = E xB xB[b}

conaisting of pairs (e,p) with ¢ a point of E and p a path joining g(e) and b,
For any e 4in g"(b) one has the exact homotopy seguence of g with basepoint e

— (B,b) —» ni(F(g,b), e) —rn‘i(E,e) —Ex, ui(B,b) —_—.,

where & = (e,D), b denoting the constant path at b.

Let £ :C —>C' be a functor and Y an object-of C'. If j: YNf —( is the

functor sending (X,v : ¥ —» fX) to X, then (X,v) > v ¢ ¥ = fX 1s a natural trans-
formation from the constant functor with value Y to fj. Hence by Prop. 2 the composits
B(Y\f) - BC —» BC' contracts canonically to the constant map with image Y, and so we
obtain a canonical map

B(Y\f) ~—> F(Bf, Y).

We want to know when this map is a homotopy equivalence, for then we have an exact
sequence relating the homotopy groups of the categories Y\f, C and C'. Since the
homotopy-fibres of a map over points connected by a path are homotopy equivalent, it is
clearly necessary in order for the above map to be a homotopy equivalence for all Y, that
the functor Y'\f —» Y\f, (X,v) > (X,vu} induced by u : Y —Y' be a homotopy
equivalence for every map u in 2 '. We are going to show the converse is true.

Because homotopy-fibres are not classifying spaces of categories, and hence are some-
what removed from what we ultimately will work with, it is convenient to formulate things
in terms of homotopy-cartesian squares. Recall that a commutative square of spaces

' h'
E! «~———p E

g'l l_s
B' —lleey B

is called homotopy-cartesian if the map
E'— B 1 8! x3 B, e b (g'(e'), R&T(57], n'(e'})

from E' to the homotopy-fibre-product of h and g is a homotopy equivalence.
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When B' is contractible, the map F(g',b') ~» E' 1is a homotopy equivalence for any b’
in B', hence one has a map E' -9 F(g,h{b')) unique up to homotopy. In this case the
square is easily seen to be homotopy-cartesian if and only if E' —» F(g,h(b')) is a
homotopy equivalence.

A commutative square of categories will be called homotopy-cartesian if the corres-
ponding square of classifying spaces is. With this terminology we have the following
generalization of Theorem A.

Theorem B, Let f: g — 2" be a functor such that for every arrow Y — Y' in

C', the induced functor Y'\f —s Y\f is a homotopy equivalence. Then for any object
Y of C' the cartesian square of categories
N\t —— ¢ iy = x
er| £ £1(1,v) = (1%,)
R 3t
Y\g' __J_. gv J'I(Yl’v) =

is homotopy-cartesian, Consequently for any X in £ (Y) we have an exact sequence

- m, (C',1) —)u(Y\f, X) -—-—)n-(c X) ——-——91‘:(0' Y) - .

i+1'=
where ¥ = (x,idy).
As with Theorem A, this result admits a dual formulation with the categories f/Y.
Corollary, Suppose f 3 C - C' is prefibred (resp. precofibred) and that for every
arrow u i ¥ - Y' the base—cha.nge functor u*: £ (Y') . f—1(Y) (resp. the cobase-
change functor u,: f (Y) —_— (Y‘)) is a homotony equivalence. Then for any Y in
2 's the category f“(!) is homotopy equivalent to the homotopy-fibre of f oaver Y.

(Precisely, the square

£ ) —2sc

.

pt ———> ¢’

where i is the inclusion functor, is homotogy-cartesian.) Consequently i‘or any X m

£ (Y) we have an exact homotopy sequence

(€00 > m (7 (0),5) e m (60) Tt m (g1 T)

This is clear, since f'1 (1) - Y\f is a homotopy equivalence for prefibred f,

For the proof of the theorem we will need a lemma based on the theory of quasi-fibra-
tions [Dold-Lashof] , which is a special case of a general result about the realization
of a map/of simplicial spaces [Segal 2 ] A quasi-fibration is a map g ¢ E ~B of
spaces such that the canonical map & () —s F(g,b) induces isomorphisms on homotopy
for all 'd in B. When E, B are in the class W of spaces having the homotopy type of
a CW complex, one knows from |Milnor 2] that F(g,b) is tn W. Thus if g (b) is
also in ¥, and g is a quasi-fibration,we have that g"(b) « ™g,b) is a homotopy

equivalence, i.e. the sguare
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3-1 (v) ——i—b B

| ls
pt ——E—-)B
is homotopy-cartesian.
Lemma. Let i l—rXi be a functor from a small category I to topological spaces,

and let g : XI — BI be the space over BI obtained by realizing the simplicial space

I Xi - Xi' is a homotopy equivalence for every arrow i -+ 1i' in I, then g is a
guasi-fibration.

Proof. It suffices by Lemma 1.5 of LDold-LashofJ to show that the restriction of g
to the p-skeleton Fp of BI 4is a quasi-fibration for all p. We have a map of

cocartesian squares

Loy = U Hxx0Ar = Llx o0

} | = ]

-1 -1
F P F < F
1 < » g ( p_1) g ( p)

where the disjoint unions are taken over the nondegenerated p-simplices io -, - ip of
NI. Let U be the open set of F_ obtained by removing the barycenters of the p-cells,
and let V= Fp - Fp_" . It suffices by Lemma 1.4 of loc. cit. to show the restrictions
of g to U, V and UnV are quasi-fibrations. This is clear for V and UAYV, since
over each p-tell g 1is a product map.

We will apply Lemma 1.3 of lgc. git. to gIU, assuming as we may by induction that
gIF 1 is a quasi-fibration, and using the evident fibre-preserving deformation D of
glu into gle_ provided by the radial deformation of AP minus barycenter onto AAP.
‘vle ‘have only to check that if D carries x€U into x'€ Fp_,‘, then the map g (x) ->
g (x induced by D induces isomorphisms of homotopy groups. Supposing x ¢ F as
we may, let x come from an interior point =z of the copy of Ap correspbnding to the
simplex s = (i > i ). and let the radial deformation push 2z into the open face of

AP with vertices Jg < ..<J . Then it is easy to see that g 1(x) =X, and g Yxr) =
o

xk , k= ijo, and that the map in question is the one Xio-b-xk induced by the face
io-—> k of s. As these induced maps are homotopy equivalences by hypothesis, the proof
of the lemma is complete.

Proof of Theorem B. We return to the proof of Theorem A, The functor Py ¢ s(£)—» ¢
is a homotopy equivalence as before, but not necessarily the functor P,- The map
Bp, : BS(f) = B(C'0) is the realization of the map (**). Thus applying the preceding
lemma to the functor Y p» B(Y\f) from C'C to spaces, we see that Bp, is a quasi-
fibration, and hence the cartesian square
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I\f ——r s(f)

Py

Y 10

pt—— ¢

is homotopy-cartesian. Consider now the diagram
Y\t S(f) —2t—p C

L o e @ |

Y\¢' »3(1d.,) - C

R

o ——> L'

in which the squares are cartesian, and in which the sign '~v ' denotes a homotopy
equivalence. Since the square (1) + (3) is homotopy-cartesian, it follows that (1} is
homotopy-cartesian, hence (1) + (2) is also, whence the theorem.

§2. The K-groups of an exact category

Exact categories. Let M be an additive category which is embedded as a full sub-
category of an abelian category é , and suppose that Ll is closed under extensions in é
in the sense that if an object A of é has a subobjact A' such that A' and A/A'
are isomorphic to objects of b=1, then A is isomorphic to an object of Ig. lLet 5 be

the class of sequences

(1) 0 U S M 0

in BS( which are exact in the abelian category é. We call a map in g an admissible
monomorphism (resp. admissible epimorphism) if it occurs as the map i (resp. j) of some
member (1) of E. Admissible monomorphisms and epimorphisms will sometimes be denoted
M pcnenp B and M —=3p ¥", respectively.

The class E clearly enjoys the following properties:

a) Any sequence in 14 isomorphic to a sequence in E is in E For any M',M" in

M, the sequence

PT.
(id'o) M @ M” 2 - M > 0

(2) ) M

is in E. For any sequenca (1) in E, i1 is a kernel for j and Jj is a cokernel for
i in the additive category l\si.

b) The class of admissible epimorphisms is closed under composition and under base-
change by arbitrary maps in l__(. Dunlly, the class of admissible monomorphisms is closed
under composition and under cobase-change by arbitrery maps in Ié.

c) Let M —»M" be a map possessing a kernmel in K. If there exists amap N —» M
in M such that N = M —N" is an admissible epimorphism, then M - N" is an
admissible epimorphism. Dually for admissible monomorphisms.

For example, suppose given a sequence (1) in E and amap f: N >N in M.
Form the diagram in A
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0 g H' ooy M —doy M ey 0

(R R P

0 M P N mir O

where P is a fibre product of f and j in A . Because M is closed under exten~-
sions in é, we can suppose P is an object of —D_’I. Hence the-basechange of j by f
exists in M anditis an admissible epimorphism. )

Definition. An exact category is an additive category M equipped with a family E
of sequences of the form (1), called the(short) exact sequences of M, such that the )
properties a), b), ¢) hold. An exact functor F : K > M' Dbetween exact categories is

an additive functor carrying exact sequences in M into exact sequences in M.

Examples. Any abelian category is an exact category in an evident way, _Any additive
category can be made into an exact category in at least one way by taking E to be the
family of split exact sequences (2). & category which is 'abelian' in the‘sense of
[Heller] is an exact category which is Karoubian (i.e. every projector has an image), and
conversely., ’

Now suppose given an exact category g. Let é be the additive category of additive
contravariant functors from E to abelian groups which are left exact, i.e. carry (1) %o
an exact sequence

0 === F(H") —==p F(¥) —> F(H') .

. {Precisely, choose s universe containing M, and let 4 be the category. of left exact . _

functors whose values are abelian groups in the universe.) Following well-known ideas
(e.g. [Gabriel] ), one can prove A is an abelian category, that the Yomeda functor h
embeds g as a full subcategory of é closed under extensions, and finally that a
sequence (1) ia in E if and only if h carries it into an exact sequence in A. The
details will be omitted, as they are not really important for the sequel.

The category QM .

If § is an exact category, we form a new category Q__l~_1 having the same objects as
¥ but with worphisms defined in the following way. Let M and M' be objects in M
and consider all diagrams
(3) i Nt
where j is an admissible epimorphism and i is an admissible monomorphism. We consider

i

igomorphisms of these diagrams which induce the identity on M and M', such isomorphisms
being unique when they exist. A morphism from M to M' in the category Q}=4 is by
definition an isomorphism class of these diagrams. Given a morphism from M' to N

represented by the diagram
' g N >ty e
the composition of this morphism with the morphism from M to M' represented by (3)

is the morphism represented by the pair j-pr1 y 1'spr, in the diagram

2
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prz il
N xM,N' ey Nt iy M

px\l lj !

N >———i—+ Mt

i

M
It is clear that composition is well-defined and associative. Thus when the isomorphism
classes of diagrams (3) form a set (e.g. if every object of M has a set of subobjects)
then Ql;t is a well-defined category. We assume this to be the case from now on.

It is useful to describe the preceding construction using admissible sub- and
quotient objects. By an admissible subobject of M we will mean an isomorphism class of
admigsible monomorphisms M’ s M, isomorphism being understood as isomorphism of objects
over M, Admissible subobjects are in one-one correspondence with admissible quotient
objects defined in the analogous way. The admissible subobjects of M form an ordered set
with the ordering: M1< H2 if the unique map M1 -> M2 over M is an admissible mono~
morphism. When M, §M,, we call (M1 ,Mz) an admissible layer of M, and we call the
cokernel M2/M1 an admissible subquotient of M.

With this terminology, it is clear that a morphism from M to M' in QM may be
identified with a pair ((M1 ,Mz), @) consisting of an admissible layer in M' and an
isomorphism & : M -"-’»MZ/H1 . Composition is the obvious way of combining an isomorphism

_f M_with an admissible subquotient of M' and an isomorphism of M' with an admis-

sible subquotient of M" to get an isomorphism of M with an admissible subquotient of
M,

For example, the morphisms from O to M in QI=4 are in one-one correspondence with
the admissible subobjects of M, Isomorphisms from M to M' in QM are the same as
isomorphisms from M to H' in M.

If i : H'>=p M is an admissible monomorphism, then it gives rise to a morphism
from M' to M in QM which will be denoted

i, ¢ M =— M.
Such morphisms will be called injective. -Similarly, an admissible epimorphism j : MH-~»M"
gives rise to a morphism

]

J M~ N

and these morphisms will be called surjective. By definition, any morphism u in Q,;
1

can be factored .u = 1i,j , and this factorization is unique up to unique isomorphism.

If we form the bicartesian square

Nyt u

@ L

M Iy N !
1
then u= j'i', , and this injective~followed-by-surjective factorization is also unique

up to unique isomorphism. A map which is both injective and surjective is an isomorphism,
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and it is of the fom 6, = (6™")! for a unique isomorphism 6 in M.

Injective and aurje;:tive maps in Qg should not be confused witl-x monomorphisms and
epimorphisms in the categorical sense. Indeed, every morphism in QM is a monomorphism,
In fact, the category QI=4 /¥ is easily seen to be equivalent to th; ordered set of ad-
missible layers in M with the ordering: (HO,M1) é'(né,n;) if MISM SM CM.

We can use the operations i p»i, and jm» j to characterize the category QM
by a universal property. First we not; that these operations have the following B
properties:

a) If i and i' are composable admissible monomorphisms, then (i'i) = i’ i .
Dually, if j and Jj' are composable admissible epimorphisms then
Gt =o'yt meo (1), = (18! = 1a, .

b) If (4) is a bicartesian square in which the horizontal (resp. vertical)maps
are admissible monomorphisms (resp, epimorphisms), then i,,j! = j'!i', .

Now suppose given a category g and for each object ,H of M an object hM of
C, and for each i : M')—pM (resp. j : M —»H") amap i, 3 MY > b
(resp. j! : hM™ = hM) such that the properties a), b) hol;i. Then it is clear that
this data induces a unique functor QL( - g s, M > hM compatible with the operations
i i and j j! in the two categories. .

In particular, an exact functor P : M —)H' between exact categories induces a

functor Q¥ —» ', M >, i H(Fi), 03 l-)(F,)) . _We note also that if MO is

the dual exact category, then we have an isomorphxsm of categories
(5) Qo) = QM

such that the injective arrows in the former correspond to surjective arrows in the latter
and conversely.

The fundamental group of Qg. Suppose now that M is a small exact category, so

that the classifying space B(Q!) is defined, Let O be a given zero object of E

Theorem 1. The fundamental group n’1(B(Q§), 0) is canonically isomorphic to the
Grothendieck group Kolg_ .

Proof. The Grothendieck group is by definition the abelian group with one generator
[MJ for each object M of M and one relation LM] [M'HM"J for each exact sequence
(1) in lg . We note that it could also be defined as the not-necessarily-abelian group
with the same generators and relations, because the relations LH'J[ M“] = [M' ] M"_J =
LM"][H'] force the group to be abelian.

According to Prop. 1, the category of covering spaces of B(th‘l) is equivalent to the

category g of morphism-inverting functors F : QM —» Sets. It suffices therefore to
show the group Kor__g acts naturally on F{0) for F in I;‘ , and that the resulting func-
tor from F to K M - sets is an equivalence of categories.

Let iu : OHM and ‘]M : M —»0 denote the obvious maps, and let F' be the
full subcategory of F consisting of F such that F(K) = F(0) and L‘(:LM,) = ldF(())
for all M., Clearly any F is isomorphic to an object of g‘ , 8o it suffices to show
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F' is equivalent to K ¥ - sets.
Given a K M - set S, let Fs QM ->Sets be the functor defined by

F (M =5, Fg (1 ) =1dg, F (3 ) = miltiplication by [Ker j] on S,
using the universal property ot‘ Q. Clearly S }-yi‘s is a functor from Kog - gsets to
F'. On the other hand if FEE'. then given i ¢ M'»>»M we have i-iﬂ, = in , hence
;‘(i!) = idF(O)‘ Given the exact sequence

O ——p M! —i——k M ——‘1—-> M 0
we have j!iw,! = i!j“!, , hence F(j!) = F(jH!') € aut(P(0)). Also
Ry ) = PGl = FayDR(5)
so by the universal property of K M , there is a unique group homomorphism from K M to
Aut(F(0)) such that EH] > F(Ju Thus we have a natursl action of KM on F(O) for
any F 4n E'. In fact, it is clear that the resulting functor F}—)F(O) from F' to
Koli - sets i8 an isomorphism of categories with inverse S > Fs , 80 the proof of- the

theorem is complete.

Eg}_xg_z: K-m. The above theorem offers some motivation for the following
definition of K-groups for a small exact category l:__i .

Definition. KM = =, (B(Qy), o) .

Note first of all that the K-groups are independent of the choice of the zero object

~~0; Indeed; given another zero object-- 0',-there is a unique map. .O.-» 0'..in QM. hence . .. .

there is a canonical path from 0 to 0' in the classifying space.

Secondly we note that the preceding definition extends to exact categories having a
set of isomorphism classes of objects. We define Kir; to be Ki!g', where hi' is a small
subcategory equivalent to M , the choice of lg‘ Yeing irrelevant by Prop. 2. From now on
we will only consider exact_categories whose isomorphism classes form a set, except when-
mentioned otherwise. In addition, when we apply the results of 81, it will be tacitly
assumed that we have replaced any large exact category by an equivalent small one,

Elementary wroperties of K-groups. An exact functor f : M = li' induces a functor
QM ~>- QM', and hence a homomorphism of K-groups which will be denoted

(6) £, t KM —> KM .
In this way K becomes a functor from exact categories and exact functors to abelian
groups. Moreover. isomorphic functors induce the same map on K-groups by Prop. 2. From
(5) weé have
0) =

(n K (#°) = K.

The product M x M' of two exact categories is an exact category in which a sequence
is exact when its projections in M and M' are. Clearly Q(li_l x Ii') = QMx Q'. Since
the classifying space functor is compatible with products (g1, (4)), we have

(8) Ki(!gxg') = l(ig@Kig' , X > prﬂ(x + pr, Lx) .
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The functor @: Hx ki ->»H, (M,M') > M @ M' 1is exact, S0 it induces a homomorphism
KHOKM = xi(x;i x ¥) —2 KM .
This map coincides with the sum in the abelian group Kig because the functors M =
O@M, Mbs H® O are isomorphic to the identity.
Let j Héj be a functor from a amall filtering category to exact categories and
functors, and let ]i.l;&‘] be the inductive limit of the Ej in the sense of Prop. 3.

Then lin k__gj is an exact category in a natural way, and Q(l_i_g l='lj) = lm Qfgj ,
hence from Prop. 3 we obtain an isomorphism
(9) K (lim K,) = lig KM, .

Example. Let A be a ring with 1 and let Q(A) denote the additive category of
finitely generated projective (left) A-modules. We regard P(A) as an exact category in
which the exact sequences are those sequences which are exact in the category of all

A-modules, and we define the K-groups of the ring A by

KA = K (p(4).

A ring homomorphism A~ A' induces an exact functor A'®,? : P(A) — P(A') which is
PO £

defined up to canonical isomorphism, hence it induces a well-defined homomorphism

A .
(10) (a'®, 7), + KA —> K A", i
making KA a covariant functor of A. From (8) we have T
1 - L
(1) Ki(Ax A') = KA @ KA.
If jp> Aj is a filtered inductive system of rings, we have from (9) an isomorphism
(12) K (1n A = lim K, .

(To apply (9), one replaces g(A j) by the equivalent category l;(A.)' whose objects are
the idempotent matrices over A, , so that E(Lm’w Aj)' = lim g(Ad)'. ) Finslly we note
that P b= HomA(P,A) is an equivalence of P(A) with the dual category to g(AoP), where
4°P ig the opposed ring to A, hence from (7) we get a canonical isomorphism

(13) k() = k(%) .

Remarks. It can be proved that the groups KiA defined here sgree with those
defined by making BGL(A) into an H-space and taking homotopy groups (see for example
[Gersten 5]). In particular, they coincide for i =1 , 2 with the groups defined by
by Bass and Milnor, and with the K-groups computed for a finite field in [Quillen 2.

On the other hand, for a general exact category l=1 , the group K1 (l=l) is not the same as
the universal determinant group defined in [Ba.ss, p.389]. Thers is a canonical homomor-
phism from the universal determinant group to K1 (Li), but Gersten and Murthy have
produced examples showing that it is neither surjective nor injective in general.
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§3. Characteristic exact sequences and filtrations

Let M be an exact category and regard the family E of short exact sequences in '5.

as an additive category in the obvious way. We denote objects of E by E, B', etc. and
let sE, t, qE denote the sub-, total, and quotient objects of B, whence we have an

axact sequence
0 e B ey tE =e—b qE ~—> O

A sequence in E will be called exact if it

in M associated to each object E of E .
. With this notion of

gives rise to three exact sequences in 1\=l on applying 8, % and gq.
exactness, it is clear that E is an exact category, and that s, t, and q are exact

functors from E to lg .

Theorem 2. The functor (s,q) ¢t QE-——> QM x QY is s homotopy equivalence.

Proof. It suffices by Theorem A to show the category (s,q)/(M,N) is contractible
for any given pair M,N of objects of M . Put ¢ = (8,q)/(¥,X); it is the fibred
category over QE consisting of triples (Eyu,v), where u : 8E <> M, v 3 qf -» N are
maps in QM . L:t c ' be the full subcategory of g consisting of the triples (E,u,v)
such that _u is sur-j-ective, and let C" be the full subcategory of triples such that u
is surjective and v is injective.

Lemma. The inclusion functors C'—>C and C"—»C' have left adjoints.
i et . = = —— = =
(Eyu,v)€C; it suffices to show

that there is a universal arrow X = X in C with Z i C. .
Let u = j!i where i : sE»—p H'y j ¢t M —» M', and define the exact sequence i B
= ' )

by 'pushout':

E: 0 ——p E ==t tE =———p QB ——s O
iI [ I
i B 0 cep ' =m—p T = QE ===t O

Let X = (i E,J!,v); it belongs to C' and there is a canonical arrow X -» ¥ given by
= (i, ¢

the evident injective map E - i,E .
Now suppose given X —s X' with X' = (B', 3"
by the pair E)»—> Eo, E! = E° . Since

31
. ' "
sE)——’sEo«—-sE«g——-

!,v') in C'. Represent the map E—>E

represents U, we can suppose Eo chosen so that sE )= sE o is the map i, and
v
M - sEo is ' j. By the universal property of pushouts, the map B)>— E° factors

uniquely E > i, B> E , 80 it is clear that we have a map X —» X' in (' such that

X — X = X' is the given map X = X'.

It remains to show the uniqueness of the map x.
X - X" — X' of X — X' such that X" is in C'. Note that ¢k = QE/E' is equi-
Let (Eo , EI) be the layer

Consider factorizations

valent to the ordered set of admigssible layers in E'.

" — X' so that
corresponding to X —» X' and (Eg ,E'1') the layer corresponding to X
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(Eo ,E1)§(Eg .E:") and sEY = sE'. There is a least such layer (g" ,EM) given by
tE; = tEo » tE;’ = gE' + tE1 s which is characterized by the fact tha: th; map B JE =
E;'/Eg is injective and induces an isomorphism on quotient objects. Thus among1 th:
factorizations X - X" — X' there is a least one, unique up to canonical isomorphism,
and characterized by the condition that E -4 E" should be injective and induce an iso-
morphism ¢E = qE"._ Since the factorization X —» X — X' has this property, it is
clear-that the map X ~ X' is uniquely determined. Thus C' =+ C has the left adjoint
X X, B B

Next consider the inclusion of g" in g‘, and let (E.u,v)GC'. Represent
v igi - N by the pair j : N' == qB, 1 : N'>=p N , and define =j*E by pull-back:

O w——b SE wouep T woeeeeds N' e O

I !

0 sE » tE > B 0.

One verifies by an argument essentially dual to the preceding one that (E,u,v) j=»
(j*E,u,i!) is left adjoint to the inclusion of C" 4in C'. This finishes the lemma
e 'By l;rop. 2, Cor. 1, the categories C and C" are homotopy equivalent. Let
1 C“

(0,3 : €) , and let JM : M ~—»0 and j'N : O»+»N be the obvious maps. A map from

")M ’LN' to (E, J i ) may be identified with an admissible subobgect E' of B
such that sBE' = sE and '

gB' = 0. Clearly E' is unique, so (Q,JM ""‘N') is an initial

. .
DU - ) % 7.1 oi‘.,. ! .A‘l‘hua__g" ,mand hencsm_ -3 contractible,_vhich finishes.the proof .of the . .. ... .

theorem.

Corollary 1. Let X' and M be exact categories and let

4] » P! P 5 M .0

ba an exact sequence of exact functors from M' to M. Then
T S X2 2. ihen

Fo= ', +F" 3 l(il;l' —}Kil;l .
Proof. It clearly suffices to treat the case of the exact sequence
0 > 8 > t > q > 0
of fi :
unctors frow E to M. Let f : M x M -3»E be the exact functor sending (M',M")
to the split exact sequence
Qerp H' = M' BY" —a M" == 0,
The functors tf and @(s.q)f are isomorphic, hence

tf, = @-,(8,.%){’. = (s* + q..)f, : (Kig)a_.’ Kiﬂ .

But £, is a section of (s,,q,) : KE = (KLL!)Z which is an isomorphism by the theorem.
Thus t, = 8, + q,, proving the corollary.

Note that the category of functors from a category g to an exact category M is
an exact category in which a sequence of functors is exact if it is pointwise exac:. We
thus have the notion of an admissible filtration O = I"oc F‘C «e&F =F of a functor
F. This means that F‘p__1 (X) > E‘p(X) is an admissible monomorphismnin ¥ for every X
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in C, and it implies that there exist quotient functors F p/F for q¢< p, determined up

to canonical isomorphiam. It is easily seen that if C is an exact category, and if the

functors F_/F q are exact for 1< psn, then all the quotients F /F are exact.

Corollary 2. (Additivity for ‘characteristic' filtrations) let F: K' ->H be an
admissible filtration 0 = Foc:..

gxact funcior between exact categories equipped with an
CFn = F such that the quotient functors l"‘p/i‘p_1 are exact for 1gpg¢n. Then

Z (F /F s KM ——> KM

*

Gorollary 3. (Additivity for 'characteristic' exact sequences) peg

0——)5‘ —_— ...——-)Fn-—-)O
is an exact sequence of exact functors from M' to l=il , then

Z'(-i)p(l‘ D ;RN — KN

These result froa Cor. 1 by induction.

We give two simple examples to illustrate the preceding resu.lts.

Azglications.
Let X be a ringed space, and put xix =K, P(x), where P(X) is the category of

vector bundles on X, {i.e. sheaves of O -modu.les which are locally direct factors of gnx)

=X
equipped with the usual notion of exact sequence, Given B in P(X). we have an exact

e —functor .E®7 3 P(X) - P(X) which induces a homomorphism of K-groups (E@7),: K X —)

KX, If O —» E' —p E =~ E" == O 1is an exact sequence of vector bundles, then
Cor. 1 implies (EQ?), = (2'®?), + (e"®7), . Thus we obtain products

(1 KXQEX —> KK, [Hex > (E®?),x

which clearly make Kix into a mcdule over xox . (Products KiX& KJX -> Ki+ JX can
also be defined, but this requires more pachinery.)

Graded rings. et A =
category of graded finitely generated projective A-modules P = @ P » n€%Z .

group K (Pgr(A)) is a &[t,t” ]-module, where multiplication by t is the automorphism
induced by the translation functor P f=» P(-1), P(-1) Py
Proposition. There is a Z [t,t ‘J -module isomorphiam
24,6 @, k4, > K (Ber(a) , 16x > (A@A ), % .
Proof. Given P in Pgr(A), let F P be the A-submodule of P generated by P

for n€k, and let P be the full subcategory of Pgr(A) consisting of those P for
which F_ 1P =0 and F P = P. We have an exact functor

4,04 @ .. be a graded ring and denote by Pgr(A) the
The

T: ggr(A) — per(a) , p) = 4,8, P
where A  is considered as a graded ring concentrated in degree zero. It is known

([Bass}. p.637) that P is non-canonically isomorphic to
A&AOT(P) - _Lnj_a(.n)@%m)n
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It follows that P > F P is an exact functor from Pgr(A) to itself, and that there is
a canonical isomorphism of exact functors

PR/ _ P = A(-n)@AOT(P)l1 .

Applying Cor. 2 to the identity functor of gq and the filtration 0= F_q

-1 C-.CFq = id,

one sees that the homomorphism
[ , "ok, — KP ., t'®x k> (A(-0)®, 7),x
-q<8<q 4 o
is an isomorphism with inverse given by the map with components (Tn) s+ ~1§Ngq . Since
=}"gr(A) is the union of the zq » the proposition results from §2, (9).

§4. Reduction by resolution

In this section l='l denotes an exact category with a set of isomorphism classes, and

1=> a full subcategory closed under extensions in M in the sense that P contains a zero

object and for any exact sequence in E

(1) o] - M* > M ' »0

if M' and M" are isomorphic to objects of E » 80 is° M. Such a P is an exact
category where a sequence is exact if and only if it is exact in 5. The category Qg is
a subcategory of O,g which is not usually a full subcategory, as !*Si—admissible monomor-
phisms and epimorphisms need not be z-admissible.

In the following, letters P, P', etc. will denote objects of P , and the symbols
b, ==> , & will always refer to lé-adm.issible monomorphisms, ep;morphisms and
subobjects, respectively. The corresponding ?__’-admissible notions will be specified
explicitly. For example, P =3 P' denotes an &-admissible moncmorphism between two
objects of Piitis P-adnissible iff the cokernel is isomorphic to an object of P.

We are interested in showing that the inclusion of g in § induces isomorphisms

Kig L Kiﬁl when every object M of ‘M has a finite P-resolution:

(2) 0 P, P ¥ 0.

The standard proof for Ko consists in defining an inverse map Koléi - K og by showing
Z’(-1 )“[pn‘e Kog depends only on [M] + By Cor. 3 of the preceding section, this method
works when there exist resolutions (2) depending on M in an exact functorial fashion.
However, this situation occurs rarely, so we must proceed differently.

The following theorem handles the case where resolutions of length one exist. As an
example, think of ll as modules of projective dimension €n, and _E as the subcategory of

modules of projective dimension < n. The general case follows by induction (see Cor. 1).

Theorem 3. Let g be a full subcategory of an exact category M which is closed

under extensions and is such that

i) For eny exact sequence (1), if M is in P, then M' isin P.
ii) For any M" in M, there exists an exact sequence (1) with M in P .
Then the inclusion functor Q@ —» QM is a homotopy equivalence, so Kig “‘—’»Kib_i .
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Proof. We factor QP —» Q¥ into two inclusion functors
@ > ¢ Loy

We will prove

where C is the full subcategory of QM with the same objects as Qg .

g eand _f are homotopy equivalences.
To show g is a homotopy equivalence, it suffices by Theorem A to prove g/P is

contractible for any object P in C . The category g/P is easily seen to be eql/xi- .
= i .
valent to the ordered set J of M-admissible layers (MO,M1) in P su;h that M,/8 € B,
) ] M' , M!/B &P . By
with the ordering (N ,M,)4 (M1 Mi) 1ff MISH KM and MMy MM €2

: in J. Hence
hypothesis i), one knows that M, and M, are in P for every (Mo’H1)

in J we have arrows
() < (0u1,) +(0,0)

which can be viewed as natural transformations of functors from J to J Jjoining the

i the constant functor with value (0,0).
functor (MO.M1) [ (0,M1) to the identity and to o v
Using Prop. 2, we see that J, hence g/P , is contractible, so g 1is a 194

equivalence,
To prove f 1is a homotopy equivalence,
Q4. Put P =M\f; it is the cofibred category over C consisting of pairs (P,u)} with

w:M—>P amap in QM. Let F' be the full subcalegory consisting of (P,u) with u
. ) n :P-»M,1: PP,

i :
surjective. Given X = (P,u} in F, write u=1i,J with j @ Bwn,t: e
By hypothesis i), P 1is in P as the notation suggests. Phus X = (F,j’) is an obj
One verifies easily that X — X is a universal

we show M\f is contractible for any M in

of F', and i defines a map X =»X.
=

arrow from an object of F' to X , hence X +>X is right adjoint to the inclusion of

F' in F . By Prop. 2, Cor. 1, we have only to prove that ' is contractible.
- y F'O ig the category whose objects are maps P —» M, and in
y such that the obvious

The dual category
1)
which a morphism from P —-»M to P' -»M is amap P-HP

i 4 M.
triangle commutes. By hypothesis ii), there is at least one such object Po—-»

i je it is an
Given another P - M , the fibre product P x'MPo is an object of g , a8 it

5 ' 10
extension of P by Ker (P -» M) which is in P by hypothesis i).' Hence in F'C we
o

have arrows
(P> t) = (PxP —»H) —> (p, —»H)
al transformations from the functor (P—3¥) k> (p P, M)

h may be viewed as natur
g : Using Prop. 2,

tor.
to the constant functor with value Po-» M and to the identity functor
we conclude that F' is contractible, finishing the proof of the theorem.
Assume P is closed under extensions in lg and further that
g are in P, then so is M'.
P' «> M such that

Corollary t.
a) For every exact sequence (1), it M, H"
b) Given j : M =9 P, there exists j': P'—#»P and f:
£ = j'.‘FhIs holds, for example, if for every M there exists P'-» ¥ o) )
Let gn be the full subcategory of l: consisting of M having l;-resolutions of length

P = . The
i. e. such that there exists an exact sequence (2), and put gco Ugn en

<n,

Kig Ead Kiz = ....%Kizw.
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That P is closed under extensions in M » and hence the groups KiP are defined
results fron the following standard facts (compa.re [Bass, p.39]).

Leoma. For any exact sequence (1) and integer n0, we have

1) MCP , M"€P ., =+ M'CP
2 ]
) M, e égnﬂ =#Megml

3 K, M€ gn-h‘l =P W'¢ £n+1 *

Assuming this, we apply Theorem 3 to the pair P C-Pn+1 . Hypothesis ii) is satis-
fied, for given MGP “ ! there exists an M-admissible epimorphism P-» M with PEP;
and by 1) it is =n 1-adm:.ssible. The other hypotheses are clear, so K P -»KiP 1

=0+
for each n. The case of P, follows by passage to the limit (§2, ( 9))
To prove the lemma, it suffices by a simple induction to treat the case n = 0.
1): Since M"eg1 » there exists a short exact sequence P')—3 P —»M", so we can

form the diagram on the left with short exact rows and columns

Q;_,.pl=Pn R“——’R——)R"
Lol L]
M'-——’F————-)P P'——DP'OP"-—’P"
I L
LRI r— M' > M ——— N

and with F=M xM,,P -~ Since- P', M are in P and P ‘is closed under extenswns, we

have FEP . Since F, P €P we have from a) that M'EP , proving 1),

2): Since M'¢P,, there exists P —» N", so applying b) to pry P X, M »P,
we can enlarge P and find P" «—» M factoring into P" — M — M". Thus we can form
the above diagram on the right with short exact rows and columns, and with P', R'¢ P as
M'CP, . Applying 1) we see that R'€P, s0 REP and M€ P, , proving 2). )

3): Since M¢ 51' we can form the diagram with short exac; rows and columns

Pl=—P'—0>0

Lol

K= P s "

L

M'e—  —— M®
As M"é£1 , 1) implies Ké’g sy 80 M*'¢€ ’}?,‘ , proving 3). The lemma and Cor. % are done.

As an example of the corollary, take P = PF(A) and M= Mod(A), the category of
(left) A-modules., (Better, so that K hes a set of isomorphism classes, take M to be
the abelian category of all A-modules of cardinality <«, where o is some infinite
cardinal > card(A).) Let P (4) be the category of A-modules having P-resolutions of
length < n, and }'-__'m(A) =) gn(A). Then gn(A)—: B, as in the corollary, so we obtain

Corollary 2.  For O<nS®, we have KA *»K (P (A)). In particular if A is
regular, then KA & Ki(Modf(A)), where Modf(A) is the category of finitely generated
A~modules.
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We recall that a regular ring is a noetherian ring such that every (left) module has
finite projective dimension. For such a ring A we have gm(A) = Modf(4).

Similarly, Cor. 1 implies that for a regular noetherian separated scheme the K-groups
of the category of coherent sheaves and the category of vector bundles are the same, since
every coherent sheaf has a finite resolution by vector bundles [:SGA 6, II, 2. 2]

Transfer maps. Let £ : A— B be a ring homomorphism such that as an A-module B
is in gm(A) . Then restriction of scalars defines an exact functor from P (B) to
gm(A), hence by Cor, 2 it induces a homomorphism of K-groups which we ull denote
(3) £, ¢ KiB — KiA
and call the transfer map with respect to f. Clearly given another homomorphism

€:B—>C with CER (B), we have

(4) () = f,8, 1 KC —> KA.

We suppose now for simplicity that A and B are commutative, so that we have functors
P(4) x B (&) —> B (&) , (PM) > POM .

for Osn<m, which induce a product K AGK A — KA, [P]@ z b (P@ ?).% » and
similarly for B. Then if =(B® ") : KA - KiB we have the projection formuls

(5) o f*(f‘ x-y) = x-£,y

“Tfor x€& KO'A and yE€K,B . This results immediately from the fact that for -X 4n g(A) -

i
there is an isomorphism of exact functors

Y b (B@AX)®BY = X8

from 2 (B) to B (a).

Corollary 3. Let T = {Ti ’ i>1} be an exact connected sequence of functors from
an exact category M to an abelisn category A (i.e. for every exact sequence (1), we

have a long exact sequence

—_ 'I‘2H” — T1M' —— T1H — T1M" ).

Let P be the full subcategory of T-acyclic objects (T n!l =0 forall nz1), and
assume for each M in M that there exists P —»M with P in P, and that TnM =0

for n sufficiently large. Then Kig %Kil__l .

This results either frow Cor. 1, or better by applying Theorem 3 directly to the
inciusion _g_r'xC gnﬂ » Where gn consists of M such that M =0 for j>n.

Here is an application of this result. Put X{A =K (Modt‘(A)) for A noetherian,

i
and let f : A =» B be a homomorphism of noetherian rings. If B is flat as a right

A-module, then we obtain a homomorphism of K-groups

(6) (8,?), : KjA —> K{B

because B@A? is exact. But more generally if B is of finite Tor~-dimension as a right
A-module, then applying Cor. 3 to M = Modf{A) and TH= Torﬁ(B,M) ,
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we find that Kig = Kj'.A » where P is the full subcategory of Modf{a) consisting of
M such that TnM =0 for n>0. Since B@A? is exact on P, we obtain a homomorphism
(6) in this more general situation.

§5. Devissage and localization in abelian categories

In this section é will denote an abelian category having a set of isomorphism
classes of objects, and g will be a non-empty full s\ibcategory closed under taking
subobjects, quotient objects, and finite products in Ae Clearly E is an abelian cate-
gory and the inclusion functor g ->é is exact., We regard é and =B as exact cate-
gories in the obvious way, so that all monomorphisms and epimorphisms are admissible,
Then Q,=B is the full subcategory of Q& consisting of those objects which are also

objects of E'

Theorem 4. (Devissage) Suppose that every object M of A has a finite filtration

0= Moc M1C..CMn =M such that Mj/Mj-1 is in g for each j. Then the inclusion
functor QB —» QA 1is a homotopy eguivalence, so Kig = L

Proof. Denoting the inclusion functor by f, it suffices by Theorem A to prove
that f/M is contractible for any object M of A. The category f/M is the fibred
category over O,B consisting of ‘pairs (N,u), where Ng QB- and u : N > M is a map in

QA. By associating to u what might be called its image, that is,the layex' (u 'M‘I of

M such that u is ngen by an isomorphism N = M /M , it is clear that we obtain an
equivalence of f/M with the ordered set J(M) consistmg of layers (M M, ) in ¥
such that M /H €B, with the ordering (M MM, )g(n(;,w) iff Mic mocm‘czm1 .

By virtue of the hypothesis that M has a finite filtration with quotients in B,
it will suffice to show the inclusion i : J(M') =» J(M) is a homotopy equivalence )

whenever M'CH¥ is such that M/M'€ B. We define functors
o J(M) - (M) (MO,M1) s (nonw, MoK
83 J(M) —> (M) , (Mo,Mi) [ (MonM'. Hi) .
These are well-defined because
L t t
BAH /BN X, /Monn c Mi/Mo x M/u?
and because B is closed under subobjects and products by assumption. Note that ri =
idJ(M‘) and that there are natural transformations ir - 8 € idJ(M) represented by
(M qM.M1nM) (M AM', M) > (M P M)

Hence by Prop. 2, r is a homotopy inverse for. i, so the proof is complete.

Corollary 1. L_el:_ A be an abelian category (with a set of isomorphism classes) such

that every object has finite length. Then
ka == 1l «
1= jes K50
where {X N JGJ} is a set of representatives for the isomorphism classes of simple

objects of 4, and Dy is the sfield End(Xj)°p
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Proof., From the theorsm we have Kig = Kié s where E is the subcategory of semi-
simple objects, so we reduce to the case where every object of ﬁ. is semi-simple. Usiny
the fact that K-groups commute with products and filtered inductive limits (§2, (8),(9
we reduce to the case where A has a single simple object X wup to isomorphism. But
then M »— Hom(X,M) 4is an eq;ivalence of A with g(D), D = End(X)P, so the corollary
follows.

Corollary 2. If I is a nilpotent two-sided ideal in a noetherian ring A, then
K'(A/I) K'A , (notation as in §4,(6)).

This results by applying the theorem to the inclusion Modf(A/I) < Modf(a).

Theorem 5. (Localization) Let B be a Serre subcategory of A y» let A/B be the

associated quotient abelian category (see for example [Gabriel] [Svtan]), and let
et B-» A, s: A-» A/B denote the canonical functors. Then there is a long exact
= = = = =

seguence s, 4 e, 8, )
verrs = K (4/B) ——>KB - KA K (4/B) =0 .

(It will be clear from the proof that this exact sequence is functorial for exact
functors (4,B) —» (A',B'). Unfortunately the proof does not shed much light on the
=’ 202
nature of the boundary map d: "W(Q/E) _*Ki(g) , and further work remains to be don

in this direction.)
Before taking up the proof of the theorem, we give an example.

Corollary. If A is a Dedekind domain with quotient field F, there is a long exa

seguence
—> K F —> 1l Ki(A/m) —> KA > KF —> ..
m

where m runs over the maximal ideals of A.

Thig follows by applying the theorem to A= Modf(A), with B the subcategory of
torsion modules, whence A/B is equivalent to Modf(F) = ‘B(F), (compare [ swan, p. 115])
We have KA = K4 by Cor. 2of Theorem 3, and KB = _U_ Ki(A/m) by Theorem 4, Cor. 1
Note that the map KiA ~» K.F in the exact sequence is the one induced by the homomor—
phism A —F as in §2, (10), and the map Ki(A/m) ~> KA is the transfer map associ-

ated to the homomorphism A4 - A/m in the sense of the preceding section.

Proof of Theorem 5. Fix a zero object O in é , and let O also denote its imag
in A/B. One knows that B is the full subcategory of A consisting of M such that
;M ; 6. Hence the composZte of Qe : Qg - QA with Qs : Qé -> Q(Q/g) is isomorphic
the constant functor with value O, so Qe factors

@ o\ ©
M (M, 02 ait), (Nu) b= N

In> view of Theorem B, §t, it suffices to establish the following assertions.
a) For every u: V'—»V in Q(4/B), u*: v\ G = v\Qs is a homotopy sguivaler
b) The functor Q@ —> O\Qﬁ is a homotopy equivalence.
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Pactoring u into injective and surjective maps, one sees that it suffices to prove a)

when u is either injective or surjective. On the other hand, replacing a category by

its dual does not chenge the Q-category (§2,{7)). 4is surjective maps in (4/B) become

injective in Q((yg)o) = Q(éo/go), it is enough to prove a) when u is injc_ec;ive. say :

u = i! y 12 V'>> V., Finally we have i!iV'!

the injective map i, forany V in A/B . ‘
Let F, be the full subcategory of V\Qs consisting of pairs (M,u) such that

=V

u:VassM is an isomorphism. Clearly F=0 is isomorphic to QB , so assertion b)

= :i.VI , 80 it suffices to prove a) for

resulte from the following.

Lemma 1. The inclusion functor EV — V\Qs is a homotopy equivslence.

Denoting this functor by f, it suffices by Theorem A to show the category £/(M,u)
is contractible for any object (M,u) of V\Gs. Let themap u : V — sM in Q(A/B) be
represented by an isomorphism V == Vi/V° , where (VO,V1) is & layer in sM. It is
easily seen that the category f/(M,u) is equivalent to the ordered set of layers
(xo,n1) in M such that (aMo,sH1) = (vo,v1), with the ordering (MO,M1 )€ (M‘;,Yx') iff

1
MéCMOCv M,C M1' « This ordered set is directed because

(HO,M‘)S (rl AR, M+ H') (M ,M') .

1
It is non-empty because any subobject V,' of sM is of the form sM1 for some M1CM.

that h : M — N 4is an epimorphism. Then the restriction
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steps.
Lemma 2, Let El'i be the full subcategory of EN consisting of pairs (M,h) suc

N E B o

-

-
[
-

homotopy equivalence.

It suffices to prove kN/T is contractible for any T in QB Put C = kN/’l' it
is the fibred category over Ei consisting of psirs ((M,h),u), with (M, h) in E', and
where u : Ker(h) ~>T isa map in QE Let (=2' be the full subcategory consisting of
((M,h),u) with u surjective. Given X = ({(M,h),u) in C , write u=3'!i! with

i : Ker(h) >0y, J ¢ T —»T and define (1,4,h) vy 'pushout':

Ker(n) >— M —p &
AN
'1‘0 Sy 1 M ——— N
Let X = ((i.M,E),j!): it belongs to C' and there is an evident map X — X. One
verifies as in the proof of Theorem B_that X —>X is a universal arrow from X 10 an
object of C'. Hence the inclusion C'—~» C has the left adjoint X > X, so we have
reduced to proving that C' is contr;ctiblz. But g' has the initial object

({N,1d,), 3 ), so this is clear, whence the lemma.
T

Lemma 3. The functor H -> QB is a homotony equivalence.
29 2

Thanks. to. the. preceding lemma, it suffices to_show the inclusion ,Eﬁ‘:,-z,g‘ is a

->M isa—map_m 5.

0 e
s(g)s{i) where i s N's-a N has its cokemel in B and g:
then one can take M, to be the image of g. Thus f/(M,u) is a filtering category, so

it is contractible by Prop. 3, Cor. 2, proving the lemma,

The next four lemmas will be devoted to proving that the category EV is homotopy
equivalent to Q,g. To this end we introduce the following auxiliary categories. Let XN
be & given object of A, and let E“ be the category having as objects pairs (M,h),
where h: M~—>N is a mod-E isomorphism, i.e. a map in é whose kernel and cokernel are
in B, or equivalently one which becomes an isomorphism in é/g A morphism from (M,h)
to (M',h') 4in By is by definition amap u : M —»H' in Q4 such that

) il ) L

1
comnutes if u =1,j’. To each (M,h) in E; we associate Ker(h), which is an object
of B determined up to canonical isomorphism. To the map (M,h) ~> (M',h') represented
by (*) we associate the map in QB represented by the maps

Ker(h) ¢ Ker(hj) > — Ker(h')

induced by Jj and i respectively. It is easily checked that in this way we obtain a

functor

ky B —Q , (M,h) k> Ker(h)

determined up to canonical isomorphism. We prove kN is a homotopy equivalence in two
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homotopy équivalence. Let "I “be the ordered set of subobjects I ‘of N such that N/1
is in B, and consider the functor f : E ~+1 sending (M,h) to Im(h). One verifiea
easily that f is fibred, the fibre over I being Ei , and the base change functor from
hd 1] ) :

E] to B} Ybeing J x; t (M I) > (J xIH ~—»J). Since J 1,7 commutes with kI

and k s it follows from Lemma 2 that J xI'7 is a homotopy equivalence for every arrow

-Jdel 1n 1. From Theorem B, Cor., we conclude Ei is homotopy equivalent to the
" homotopy-fibre of f over I. Since I is contractible (it has N for final object),
. one knows from homotopy theory that the inclusion §i - 5‘ is a homotopy equivalence

_fdr each I, proving the lemma.
We now want to show EV is homotopy equivalent to Eﬂ when sN & V., First we note

a simple consequence of the preceding.
Lemma 4. Let g : N—N' Dbe a map in A which is 8 mod-B isomorphism. Then the
functor g, : B = Bii » (M,h) > (M,gh) is a homotopy eguivalence.

One verifies easily that by associating to (M,h)€ E, the obvious injective map
Ker(n) —» Ker{gh), one obtains a natural transformation from ky to ky 8, - (Observe:
In 'lower' K-theory one calculates with matrices - in 'higher' K-theory with functors.)
Thus kN and kN,g. are homotopic, and since kN and kN' are homotopy equivalences,
so is g, , whence the lemma.

Now given V in 2/2 s let I, be the category having as objects pairs (N,d),
where N 48 in é and & : oN 2V is an isomorphism in Q/E y in which a morphisa
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(N,d) => (N',§') isamap g : N -» N' such that ¢'s(g) = 4 . It is clear from the
construction of é/B that Iv is a filtering category. For example, given two maps 8y
g, (N,8) = (N',d') we have s(g1-52) =0, so Im(g1-52)sB hence we obtain a map
(8+,4') —> (N",4") equalizing g,,g, with N* = N'/In(g-g,).

We have a functor from I, %o categories sending (¥,6) to E, and g: (§,8) >
(N',4') to &, : By =»E;, . Further, for each (N,4) we have a functor

- 1 A, A,
P B = By o n) b (6 s v e s )

, HA

Since P(y¢ 48 = P(y,4) for any mep g : (N,d) — (N',4') in I, » ve obtain a
» ’

functor
(*) ;%:_,{(N.d) BB} > F
which we claim is an iscmorphism of categories. In effect

(M, 8.5 V4 gif) = p(n'ed)(M,idM)
for any (M,0) in F, , shoving that (**) is surjective on objects. Also given

P(x, ¢/)(M n) = P(y, ﬁ‘(M oh'), then # = ¥* and s{h} = s{h') . Letting N' = N/Ia(h-h')

we otain a map g : (N,d) ~> (N',4') such tha: g,(M,h) = g,(M',h'), showing that (**)

is injective on objects. The verification that (%) is bijective on arrows is similar.

Applying Prop., 3, Cor, 1, we obtain from Lemma 4 and (**) the following.
Lemma 5. For any g{ : s¥ &V, the functor Pry 4) is a homotopy equivalence.

o eriaf

e e anpsto SR R
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§6. Filtered rings and the homotomr property for regular rigﬁu

This section contains some important applications of the preceding results to the
groups Kii = Ki(Modf(A)) for A noetherian, If A is regular, we have KLA “ KiA by
the resolution theorem (Th. 3, Cor. 2), 80 we also obtain results about K, A for A
regular. In particular, we prove the homotopy theorem: KX, A K (A[t]) for A regular.
According to [Gersten 1] this signifies that the groups K A are the same as the
K-groups of Karoubi and Villamayor for A regular (assuming Theorem 1 of the announcement
[Qu:.llen 1] which asserts that the groups K, A are the same as the Quillen K-groups of

{Gersten 1]).

Graded rings. Let B = _U_ B » 120 be a graded ring and put k = o . From now on
we consider only graded B—-modules N= __u N with n»O0, unless specified otherwise. Put

Ti(N) = ’I‘ori(k,N)
where k 1is regarded as a right B-module by means of the augmentation B —» k. Then
Ti(N) is a graded k-module in a natural way, e.g. TQ(N)n = Nn/(A'th—l o+ AnNo).
Denote by F N the submodule of N generated by Nn for n<p, so that we have
0=F NCFNC.., UFPN = N. It is clear that

The end is now near., To finish the proof of the theorem, we have only to show
(iw)* : V\@s = 0\Qs 1is a homotopy equivalence. Choose (N,d) as in Lemma 5 and form
the diagram

B ——efl 2wd) F, <v\e

| l (£,,)"
@ —==—> F CO0\G
The diagram is not commutative, for the lower-left and upper-right paths are respsctively
the functors
(M,h) k= (Ker(n), 0 &£ s(Ker(n)) )
(M,n) b= (M, (1,), + O —> o) .
However it is easily checked that by associating to (M,h) the obvious injective map
Ker(h) —» M, one obtains a natural transformation between these two functors. Thus the
diagram is homotopy commutative, and since all the arrows in the diagram are homotopy
equivalences except possibly (:Lv!)* by Lemmas 1, 3, and 5, it follows that (i‘”)“ is
one also., The proof of the localization theorem is now complete.
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0] n>
(1) T(FN), = P
P To(N)n ngp
and “thut there aré canonical 8pimorphisms T s e o
(2) B(-p) 8, To(l‘l)p — FPN/FP—1N

where B(-p)n = Bn-p .

Lemma 1. If T,(N) =0 and Tor‘i‘(B,To(N)) =0 for all i)0, then (2) is an
isomorphism for all p.
Proof. For any k-module X we have

(3)  Torf(8,X) =0 for 1>0 =——p 1,(88,X) =0 for i>o.

In effect,if P. is a ke-projective resolution of X, then B® P. is a B-projective

Ko and T(Bax)=u(keBaaP)_H( P.) =0 for i>0, In

particular by the hypothesis on T (N) we have

resolution of B @

(4) Ti(B QkTo(N)) = 0 for i)0.
Let ,RP ve the kernel of (2). Since (2) eclearly induces an isomorphism on T, we
obtain from the Tor long exact sequence an exact sequence
7, (B(-p) ekwo(n)p)n — T1(Fp"/"p.1“)n'§" To(Rp)n‘”" 0.
The first group is zero by (4), so 9 isan isomorphism.

Fix an integer 8. We will show that (2)' is an isomorphism in degrees {s and
also that T1(F N)n =0 for ng¢s by decreasing induction on p. For large p, this is
true, because Ti(FpN)n = T1(N)n for prn, and because T, (N) = 0 by hypothesis.
Assuning T, (E‘pN)n =0 for n<s, we find from (1) and the exact sequence
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T, (» N) -—>T1(FPN/FP_1N)n — TO(F N) — TO(FPN)n

that T, (p N/F =17 (Rp) =0 for ngs. It follows that RP is zero in degrees
<s, showing that (2) is an isomorphlsm in degrees S8 as claimed, In addition we
find 0 =T (B(-p) ﬁ (N) ) & T (E‘ N/F N) for ngs, whence from the exact sequence

TZ(FPN/FP_1N)D — T, (x“p_in)]n — '1'1(1-‘}3:)n
we have T1(Fp-1N)n =0 for ngs, completing the induction. Since s is arbitrary,
the lemma is proved.

Suppose now that B is {left) noetherian, and let Modfgr(B) be the abelian
category of finitely generated graded B-modules. Its K-groups are naturally modules
over Z[t], where the action of t is induced by the translation functor N j= N(-1).
The ring k is also noetherian, so if B has finite Tor dimension as a right k-module,
we have a homomorphism (§4,(6))

(5) (Be2), & K 1k —> K, (Modfer())
induced by the exact functor B Qk? on the subcategory E of Modf(k) consisting of
k-modules F such that Tori(3,F) =0 for 1>0.

Theorem 6. Suppose B is a graded noetherian ring such that B has finite Tor
dimension as a right k-module, and such that k has finite Tor dimension as a right
Bemodule. Then (5) extends to a Z[t]-module isomorphism

z[t] o, Kik % K, (Modfgr(B)) .

(The hypothesis that k be of finite Tor dimension over B is very restrictive.
For example, if k is a field and B is commutative, then B has to be a polynomial
ring over k. In all situations where this theorem is used, it happens that B is flat
over k. Does this follow from the assumpltion that B and k are of finite Tor dimen-
sion over each other?)

Proof. Let N' be the full subcategory of Modfgr(B) consisting of N such that
7,(N) =0 for i;O. and let N" be the full subcategory of I={' consisting of N such
that TO(N)EE . By the finite Tor dimension hypotheses and the resolution theorem (§4)
one has isomorphisms K. F =K'k , KN" = KN' = K (Modfgr(B)). Let N* be the full

i=" i 7 Ti= i= i
subcategory of N" consisting of N such that FnN = N. We have homomorphisms

EED® = K () 2y & (41) S (k,F)
induced by the exact functors (F , 0€jig¢n) b _Ll B(-3) & FJ (this is in N" by (3))
and Nl (7T (N) ) respectively. Clearly cb = id, On the other hand, by Lemma 1 any N
in g" has an exact characteristic filtration OCFONC..CFHN N with FPN/FP'1N =
B(-p) 2,7 (N) , 80 applying Th. 2, Cor. 2, one finds that bc = id, Thus b is an
isomorph:.sm. so by passing to the limit over n we have Z{_t]ﬁ K F =K, N", which proves

i

the theorem.

The following will be used in the proof of Theorem 7.
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Lemma 2. Suppose B is noetherian, k is regular, and that k has finite Tor
dimension as a right B-module. Then any N in Modfgr(B) has a finite resolution by
finitely generated projective graded B-modules,

Proof. Starting with No = N, we recursively construct exact sequences in Modfgr(B)
O——»Nr—-»qu —-’Nr—1 -0

where Pr—1 is projective. We have to show N is projective for r large.. Since
Ti(Nr) = i+1( ) for 1>0, it follows that T, (N ) =0 for i>0 and rzd, where
d is the Tor dmsnsmn of k over B. Then for r >d we have exact sequences

0 =T, (N ) --»TO(PM) -—,TO(NM) —0 .

As k is regular, To(Nd) has finite projective dimension s, so To(Nr) is projective
for r> d+s . It follows from Lemma 1 that Nd+s is projective, whence the lemma.

Filtered rings. let A be a ring equipped with an increasing filtration by subgroups
0= F_1A CFOACF1AC «ss such that 1&F°A , F A'FqACquA , and UFpA = A. Let
B =gr(A) = [ FPA/FP_1A be the associated graded ring and put k =P A = B, . Bya
filtered A-module M we will mean an A-module equipped with an increasing filtration
0=F_ HCFMC.. such that FAF‘MCF qM and UFH M. Then gr(M) =

Ur H/F M is a graded B-module in a natural way.

Lemma 3. i) If gr(M) is a finitely generated B-module, then M is a finitely
generated A-module. In particular, if every graded left ideal in B ia finitely

generatad, then A is noetherian.

11) If gr(M) is a projective B-module, then M is a projective A-module.

iii) If gr(M) has a resolution by finitely generated projective graded B-modules
of length $n, then M has a P(A)-resolution of lemgth ¢ n

_ Proof. We use the following construction. Suppose given k-modules Lj and maps
of k-modules Lj-—> F JH for each Jj20 suchthat the composition

Ly —>FM —»grd(ﬂ) —-,>'1‘°(sr(B‘l))‘j

is onto. Let P be the filtered A~module with an = I" A QkLJ and let & :P-—M
be such that p’ restricted to A ﬁij is the A-linear extension of the given map from
L, to FM. Then To(gt(P)) =L, , and § is a map of filtered A-modules such that
'l‘o(gr(;o')) is onto, It follows that gr(#) is onto, hence Fn(yf) is onto for all n,
and so ¢ is onto. Thus if K = Ker(d) , FK =KnF M, we have an exact sequence of

A-modules

[ > K P M [¢]
such that

0 -—»FnK ——»FnP —’FnM — 0
(6) 0 —>gr K —> gr P ——>gr i —> 0

are exact for all n.
i)+ If gr(M) is a finitely generated B-module, then To(gr(M)) is a finitely
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generated k-module, hence we can take LJ. to be a free finitely generated k-module
which is zero for large j. Then P is a free finitely generated A-module, so M is
finitely generated, proving the first part of i). -The second part follows by taking M
to be a left ideal of A and endowing it with the induced filtration E'nM =Mn FnA .

ii): If gr(M) is projective over B, then To(gr(M)) is projective over k, and
we can take Lj = To(gr(M))j + Then To(gr(l)) is an isomorphism, so from the exact
sequence

7, (gr(4)) —> 7 (g0(K)) ~—= T (gr(P)) —>1_(gr(M))

we conclude that To(gr(j()) =0. Then gr(K) =0, s0 K=0,M =P, and M is
projective over A, proving ii).

iii): We use induction on n, the case n =0 being clear from i) and ii).
Assuming gr(M) has a resolution of length € n by finitely generated graded projective
B~modules, choose P as in the proof of i), so that gr(P) 4is a free finitely generated
B-module., From the exact sequence (6), and the lemma after Th. 3, Cor. 1, {or Schanuel's
lemma), we know that gr(K) has a resolution of length & n-1 by finitely generated
graded projective B-modules. Applying the induction hypothesis, it follows that K has
a Z(A)-resolution of length € n-1, so M has a E(A)—resolution of length € n, as was

to be shown.

Lemma 4. If B is noetherian, k is regular, and if k has finite Tor dimension

e 88 -8 PigH S~ B-iodule,--then- .4 -is regular SO

This is an immediate consequence of Lemma 2 and Lemma 3 iii).

We can now prove the main result of this section.

Theorem 7, Let A Dbe s ring equipped with an increasing filtration
o] F_,‘A CFOA [ F1AC «ss such that 1éF°A , FpA*FqAC Fp+qA s and UFPA = A, Suppose
B = gr(A) is noetherian and that B is of finite Tor dimension as a right module over

Bo = FOA, (hence FOA and A are noetherian and A is of finite Tor dimension as a

right FOA-modu.le). Suppose also that FoA is of finite Tor dimension as a right
B-module. Then the inclusion F AC'A induces isomorphisms Ki(FOA) = KiA . If further

FOA is regular, then so is A, and we have isomorphisms Ki(FoA) = KiA .

Proof. Put k = FOA. Since B is noetherian, we know A is also by Lemma 3 i),
Also if B has Tor dimension d over k, then F‘nA/Fn_1A has Tor dimension gd for
each n, so the same is true for FnA » and hence also for A. Thus the map Kj"k -> Kj'.A
is defined, and we have only to prove that it is an isomorphism., Indeed, the last asser-
tion of the theorem results from Lemma 4 and the fact that K:LA = KiA for regular A by
the resolution theorem (Th, 3, Cor. 2).

Let 2z Dbe an indeterminate and let A' be the subring _]_L(FnA)zn of A[z]. Ve
show the graded ring A' satisfies the hypotheses of Theorem 6. The fact that A*' has
finite Tor dimension over k is-clear from the preceding paragraph. Since z 1is a
central non-zero-divisor in A', we have that B = A'/zA' is of Tor dimension one over

A'. As k has finite Tor dimension over B, it follows that k has finite Tor dimension
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over A'. Finally to show A' is noetherian, we filter A' by letting FPA' consiat of
those polynomials whose coefficients are in FpA. The ring
s = L e
pgn P
is isomorphic to gr(A)[zJ, which is noetherian, heénce A' is noetherian by Lemma 3 i).
Let F be the full subcategory of Modf(k) consisting of F such that Torl:(B,F)
=0 for i>0, whence K F=Kik by the resolution theorem (Th.3, Cor. 3). Applying

1;
Theorem 6 to B and A', we obtain Z[t]-module isomorphisms

- z{t] @ KF =% K (Hodrer(B)) , 1ox > (B @),
7

aft]e kF S K (Hoafer(a')) , 121 > (A'82),x.
Let B be the Serre subcategory of 4 = Modfgr(A') consisting of modules on which
2 1is nilpotent. The functor
j ¢t Modfgr(a') —> HModf(A) , M M/(z-1)M

is exact and induces an equivalence of the quotient category é/g with Modf(a). (Compare
[Swan, p. 114, 130]; note that if 8 = [zn} , then S"A' is the Laurent polynomizl ring

A[z,z-1], and a graded module over A[z,z-1] is the same as a module over A = A'/(z-1)A'.)
Since A'/zA' = B, we have an embedding

i : Modfgr(B) -—> Modfgr(A')

identifying the former with the full subcategory of the latter consisting ”of méd{liés
killed by z. The devissage theorem implies that Ki(Modfgr(B)) = K;B . Thus the exact
sequence of the localization thorem for the pair (é,g) takes the form
i :
(8) ——> K, (Modfgr(B)) —=—K, (Hodfez(4')) --‘11-»1({14 —_—
We next compute i, with respect to the isomorphisms (7). Associating to F in F

the exact sequence

2z
'—
o--->A(1)akP A' e F BeF » 0

we obtain an exact sequence of exact functors from F to Modfgr(a'). Applying Th. 2,
Cor, 1, we conclude that the square of Z[t]-module homomorphisms
zls] @ kP == K, (Moafer(8))
1=t i,
zft] @ KE —== K, (Moafgr(a'))
is commutative. Since 1-t is injective with cokernel Kig , we conclude from the exact

sequence (8) that the composition

KE —> K, (Modrgr(a')) ~dx, KiA

induced by F i A'R
the theorem.

kF > A ﬁkb‘ is an isomorphism. Since xig = Kik , this proves
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The preceding theorem enables one to compute the K-groups of some interesting
non~commutative rings.

Examples. Let Lg, be a finite dimensional Lie algebra over a field k, and let
U(OJ/) be its universal enveloping algebra. The Poincare-Birkhoff-witt theorem asserts
that U(Lg/) is a filtered algrebra such that gr(U(g«)) is a polynomial ring over k.
Thus Theorem 7 implies that Kik = KiU(lg/). Similarly if Hn is the Heisenberg-Weyl
algebra over k with generators Pyr Qo 1gign, subject to the relations [pi'pj] =

[qi,qj] =0, [pi,qj] = Sij , then we have Kk =KH .

Theorem 8. If A 4is noetherian, then there are canonical isomorphisms
i) K]!_(A[t]) X KA
1) Kk D= ok 4

Proof. i) follows immediately from the preceding theorem.
ii): Applying the localization theorem to the Serre subcategory B of Modf(Aft])
consisting of modules on which t - is nilpotent, we get a long exact sequence

— kB — K4 — £G4l —
ST Sr /
KA Kla
i i
where the first vertical isomorphism results from applying the devissage theorem to the
enbedding Modf(4) = Modf(aft]/ta[t]) C B ." The hoiiomorphisu 4[t,t”'] -——> 4 sending t

to 1 makes A a right module of Tor dimension one over A[t,t_1], 80 it induces a map
Ki(A[t,t"]) —» KlA left inverse to the oblique arrow, Thus the exact sequence breaks
up into split short exact sequences proving ii).

Corollary. (F\mda.mental theorem for regular rings) If A is regular, then there
are canonical isomorphisms Ki(A[t]) = KiA and Ki(A[t,c_1]) = KiA@ K, 4.

This is clear from Th. 3, Cor. 2, since A{t] and A[t,t-i] are regular if A is.

Exercise. let ¢ be an automorphism of a noetherian ring 4, and let Ad[t],
A [t,t"] be the associated twisted polynomial and Laurent polynomial rings in which
tea = #la)+t , ([Farrell-Haiang]). Show that KA = K).'.(Adf_t]) and that thers is a long
exact sequence
(9) — kA, Kjp > KAt ]) kg h
We finish this section by showing how the preceding results can be used to compute
Keith Dennis points out that this has some interest

already in the case of K2 » 8ince a non-commutative generalization of Matsumoto's theorem

the K-groups of certain skew-fields.

is not known, (Here and in the computation to follow, we will be assuming Theorem ! of
the announcement (Quillen 1) » which implies that the KZA here is the same as Milnor's, -
and that the groups KiE‘q are the same as the ones computed in [Quillen ZJ.)

Example 1, Let k be the algebraic closure of the finite field i“p, and let A be
be the twisted polynomial ring kﬁ[F] with Fx =x% for z in k, where q = pd.
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Then A is a non-commutative domain in which every left ideal is principal. Let D be
the quotient skew-field of A, whence Hodf(D) = Modf(A)/E, where B 18 the Serre sub-
category consisting of A-modules which are torsion, or equivalently, which are finite
The localization theorem gives an exact sequence

i N
(10) > KB —%> KA XD > Kqd —

dimensional over k.

(A and D are regular), and we have KA =Kk by Theoren 7.

An object of B is a finite dimensional vector space V over k equipped with an
additive map F : V_-; V such that F(xv) = x3F(v) for x in k and v inV, Itis
woll-known that V splits canonically: V = Vo @ V1 , where F 1is nilpotent on V0 and
bijective on V,‘ , and moreover that

ke V' > ¥,
q

where VF = {ve v l Fv = v} is a finite dimensional vector space over the subfield E‘q
of k with q elements, Thus we have an equivalence of categories

B 2 U Koar(a/aF®) x Moat(E,) .
- n

Applying the devissage theorem to the first factor, we obtain Kig = Kik@ Kix" .
Let 4 : k =»k be the Frobenius sutomorphism: #(x) = x3, and let @#(V) denote the
base extension of the  k-vector space V with respect to ¢, i.e. #(V) =k eV, where
—-l--jg-regarded -as-a-right-- k-module-via— gv-- If--V--is-regarded-as--an-—-A-moduls-killed by —-vn-

P, we have an exact sequence of A-modules
0 —> a0 4(V) — 2@V — V — 0
a@(z@v) p» axF RV

On the other hand, if W is a finite dimensional vector space over E‘q, we have an
exact sequence of A-modules
O-—»ASE.V——-»AQE.H——-»kquW-—»O
ae@ 3 > a(F-1)ew
where F acts on the cokernel by F(x @ w) = x2 @ w . Applying Th. 2, Cor. 1, to these
"characteristic® sequences, one easily deduces that the composite

i*
= k
Kk OKF, = KB —2> KA = K

L__.
is zero.on the factor Kin and the map 1 - sf* on Kik « From [Quillen 2] one has
€ ; -
exact sequences ‘- d, ) . » \‘-\@W \ ‘)_‘;
0 — KF —> Kk —% Kk —> &’Y"-’* oo

for 1>0. Combining this with (10) we obtain the formulas
KD = Z , KD = ZOZ
(1) Ryd = ()% = @(")m? >0
Ky 4D = (1(21m*q)2 =0 10 .
’ [ O, - | e Z)
Can alao &M‘%@,wt( ki U2 Ry Lt P
= et ™ /\.: 2N "@ s L/ i\‘\ ! a%: A #o f‘l}@d\
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Example 2. Let H be the Heisenberg-Weyl algebra with generators p,q such that
pq - gp =1
of - H. In this case, one can prove that the localization exact sequence associated to

Modf(H) and the Serre subcategory of torsion modules breaks up into short exact sequences

over an algebraically closed field k, and let D be the quotient skew-field

0 —>Kk —>KD — J_'Lka — 0

where the direct sum is taken over the set of isomorphism classes of simple H-modules.
The proof is similar to the preceding, the essential points being a) torsion finitely
generated H-modules are of finite length, because H has no modules finite dimensional

over k, and b) k is the ring of endomorphisms of any simple H-module ({(uillen 3]).

§7. K'-theory for schemes

1. If X is a scheme, we put KqX = qu(x), where g(X)- is the category of vector
bundles over X (= locally free sheaves of 0 -modules of finite rank) equipped with the
K M( )s

The following theory

usual notion of exact sequence. If X is a noetheman scheme, we put K&X
where P=I(X) is the abelian category of coherent sheaves on X.
concerns primarily the groups K('IX, so for the rest of this section we will assume all
schemes to be noetherian and separated, unless stated otherwise.

As the inclusion functor from P(X) to M(X)

is exact, it induces a homomorphism

() e EX = KX

When X 4is regular this is an isomorphism.
F is a quotient of a vector bundle [SGA 6 II 2.2.3 - 2.2.7.1] , hence it has a resolution

In effect, one knows that any coherent sheaf

by vector bundles, in fact a finite resolution as X is regular and quasi-~compact (see
[sca 2 VIIT 2.4]). Thus 1.1 4is an isomorphism by the resolution theorem (Th. 3, Cor. 1).

If E is a vector bundle on X, then Fp» ER F is an exact functor from rg(x) to
itself, hence as in §3, (1), we obtain pairings

1.2 KX &KX —» KX
(1.2) X 8K .

making x&x a module over the ring KOX. (In a later paper I plan to extend this idea to
define a graded anti~commutative ring structure on K, X such that KX is a graded

module over K,X.)

2. Functorial behavior. If f : X —» Y is a morphism of schemes (resp. a flat
morphism), then the inverse image functor f* : g(Y) ~ P(X) £* ¢ M(Y)

is exact, hence it induces a homomorphism of K-groups which will be denoted

(resp. - ) )

2.1 f*: KY 5 KX L f% L K'Y 5 KK )
(2.1) = K ( resp q—»q)

It is clear that in this way Kq becomes a contravariant functor from schemes to abelian

groups, and that Kf’l is a contravariant functor on the subcategory of schemes and flat

morphisms.
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be a filtered projective system of schemes such that

= lim X,. Then
=~ i —

Proposition 2.2. Let ij» Xi

are affine, and let X

the transition morphisms Xi - Xj

X = lim KX, .
(2.3) K Mo KXy

1f in addition the transition morphisms are flat, then

(2.4) KX = g KX, .
Proof. We wish to apply 82 (9), using the fact that P(X) is essentially the
inductive limit of the g(Xi) by [EGA v 8.5]. In order to obtain an honest inductive
system of categories, we replace I=>(Xi) by an equivalent category using Giraud's method

as follows, Let I be the index category of the system Xi , and let I' ©bve the
category obtained by adjoining an initial object 4 to I. We extend the system Xi to
I' Dby putting X,‘ =X, and let P be the fibred category over 1' having the fibre
B(%)
object of 51
(3 >1)we, = E;
and i > Zi is a functor from 1°

to see that we have an equivalence of categories

over 1i. Let P be the category of cartesian sections of P over I'/:I.. (an
is a famn.ly of pairs (EJ, GJ) with E éP(X ) and 8,
for each object j +i of I'/x. ) Clearly P is equivalent to P(X )

to categories., Using [EGA Iv 8. 5] it is not hard

an isomorphism

;il_n;,(u-)gi) — P(X)

such ‘that a sequence 1s exact m P(X) if and only if it comes from an exact sequence in
some P, . Thus from §2 (9) we ‘have K P(X) = lim X Pi , proving 2,3. The proof of 2.4"
is smllar.

2.5. Suppose that £ : X ~»Y is a morphism of finite Tor dimension (i.e. gx is
of finite Tor dimension as a module over f-1(21) )}, and let E(Y,f‘) be the full sub-

category of M(Y) consisting of sheaves F such that

O
or." (O ,F) =0 for i»0 .

Assuming that every F. in M(Y) is a quotient of a member of P(Y £), the resolution
theorem (Th. 3, Cor. 3) implies that the inclusion P(Y f£) ~ N (Y) induces isomorphisms
on K-groups. Combining this isomorphism with the homomorphism induced by the exact
functor f£* : B(Y,f) = g(x), we obtain a homomorphism which will be denoted

(2.6) £ KY — KK -
The assumption holds if either f is flat (whence R(Y,f) = M(Y) ), or if every coherent
sheaf on 1 is'the quotient of a vector bundle (e.g. if Y has an ample line bundle).
In both of these cases the formula (fg)* = g*f* is easily verified. ‘
X = Y be a proper morphism, so that the higher direct image functors
Let F(X,f) denote the

0 Eor i»0, Since

2.7. Let f:
Rit‘ carry coherent sheaves on X to coherent sheaves on Y.
full subcategory of VI(X) consisting of F such that rle W(F) =
R f, =0 for i large [n.GA II1 1.4, 12] we can apply Th. 3, Cor. 3 to the inclusion
E(X,f)o—p x~__&(x)° to get an isomorphism qu(x,f) ‘-“'vK&X, provided we assume. that every
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coherent sheaf on Composing this isomorphism

: E(X.f) => U(Y), we

X can be embedded in a member of F(X,f).
with the homomorphism of X-groups induced by the exact functor f .
obtain a homomorphism which will be denoted

(2.8) f, 1 K'X ~ K'Y
q q

The assumption is satisfied in the following cases:

i) Wwhen f is finite, in particular, when f -is a closed immersion. In this case
R, =0 for 1>0 [EGA III1,3.2], so F(X,f) = H(x).

11) When X has an ample line bundle [EGA II 4.5.3]. In effect if L 1is ample
on X , then it is ample when restricted to any open subset, and in particular, it is
ample relative to f. Replacing L by a high tensor power, we can suppose L is very
and further that L is generated by its global sections.
(0, )P 1
=X
obtain an exact sequence of vector bundles

ample relative to f , Then for

En

any n we have an epimorphism » hence dualizing and tensoring with L

0 — 04— (I™® 5 5 — 0.
Hence for any coherent sheaf F on X we have an exact sequence
QO =t P —p F(n)m

(2.9) — FQE — 0

where F(n) Fe L But by Serre's theorem [EGA IIT 2.2. 1] s there is an n, such
that R f, (F(n)) =0. for 4>0, n3n, so Fn)G. F(X f) for n2n . Thus F can be

T—
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0
£ERF

Thus E @ £*F is in F(X,f), so by the definition of 2.6 and 2.8, we have that
v > £,(x-f*y) 1s the endomorphism of K'Y induced by the exact functor ¥ > f, (B @£F)
Since we have an isomorphism f,(E @ £*F) = f,E @ F , the projection

a#0
R (E ¢ £*E) =
q=0.

from L to Q(Y).

formula follows.

Proposition 2.11. Let
X e

o e

Y'.—.LY

be a cartesian square of schemes having ample line bundles. Assume f is proper, g is
of finite Tor dimension, and that Y' and X are Tor independent over Y, (i.e.
0.
= : ;
Tor, 'y(g,i,’y,, % ) = 0 for i»0
for any x€X, y'€Y', ye¥ such that f£(x) =y = gly').) Then
. 1yt
g f, = f'% g™ : K"IX — KqY .
Sketch of proof. Set L = P(X,g‘)n P(X,f). From the formula Lg*Rf, =Rf',lg'

in the derived category [oGA 6 IV 3. 1.0] one deduces that for F¢ L we have that

“embedded“in“rmenrber“ot‘“‘F(X T ‘*as—’a“s“ééf'tea.
The verification of the formula (fe), =
forward and will be omitted.

f,g, 1incases i) and 1ii) is straight-

Proposition 2.10. (Projection formula) Suppose f : X — Y proper and of finite
Zor dimension, and assume X and Y have ample line bundles so that 2.6 and 2.8 are
defined. Then for x &KX and y € K'Y we have f,(x.-f*y) = £,(x).y in K'Y, where
f,(x) ig the image of x Dby the homomorphism f, @ KOX —DKOY of [SGA 6 2.12.3].

Proof.

We recall that if x = [E] is the class of a vector bundle E, then £,(x)
is the class of the perfect complex Rf, (E) Arguing as in case ii) above, one sees
that K X is generated by the elements [E] such that R: b4 (E) 0 for i>»0., Then
Rf,(E) 3‘ £,8 , and f,(x) = L'(1) [P]e K %X , where {P} is a finite resolution of f,E
by vector bundles on Y. Let L_. denote the full subcategory of Q(Y) consisting of F

such that

o o
or, (£,E,F) = 0 or, = (0, /F) 1>0.

By the resolution theorem we have Kq& = K'Y,

- PEF

Moreover, applying Th. 2, Cor. 3 to

0—->PnﬁF—>.. —> fEQF - 0

for F ¢ Ly one sees that y >, (x)+y is the endomorphism of K'Y induced by the
sxact functor P> f,E@F from L to M(Y)

From the projection formuls in the derived category:
(see [SGA 6 I1I 2.7]), ve find for F in L that

i bp) - ek 5
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EFER(Y,E), e P E F(X' £'), &nd” that there 'is an isomorphism— g*f, (F
1

Thus everything comes to showing that K L __.:w K'X . Since qu(x,g )#Kq)( , We have

only to check that the inclusion L =P X,g') induces isomorphisms on K-groups. But

this follows from the resolution theorem, because the exact sequence 2.9 shows that the

functors Rif* on the category E_(X,g') are effaceable for iM0.

3, Closed subschemes. Let Z be a closed subscheme of X, let i : Z —>X be the
o et

canonical immersion, and let I be the coherent sheaf of ideals in QX ’defining Z. The

functor i, : t=4(2) - [4__()() allows us to identify coherent sheaves on 4 with coherent

sheaves on X killed by I.

Proposition 3.1, If I is nilpotent, then i, : K&Z — K&x is an isomorphism., In
particulasr, x"l(x ) K&x .

This is an immediate consequence of Theoren 4.

red
Let U be the complement of Z in X, and j : U — X the
Then there is a long exact sequence

i i*
— —> X! » K'X Kt
Ka'ﬁu qu q q

) — ¥(U) induces an equivalence

Progositioﬁ 3.2
canonical open immersion.

(3.3)

Proof. One knows [Gabriel,Ch. V] that j* : ¥(
of ¥(U) with the quotient category Q(X)/g, where
ting of coherent sheaves with support in Z. Theorem 4 ‘implies that {, :

X
B is the Serre subcategory consis-
#(2)~» B

127

f'*g'*(F) [




120 “

induces isomorphisms on K=-groups, so the desired exact sequence results from Theorem 5.

Remark 3.4, The exact sequence 3.3 has some evident naturality properties which

follow from the fact that it is the homotopy exact sequence of the "fibration"
BQM(2)) ——> BQ(M(X)) — Ba(u(v)) .

For example, if Z' is a closed subscheme of X containing 2, then there is a map from
the exact sequence of (X,2) to the one for (X,2'). Also a flat map f : X'—» X

induces a map from the exact sequence for (X,Z) to the one for (X',f'1Z).

Remark 3.5. From 3.3 one deduces in a well-known fashion a Mayer-Vietoris sequence

K' (UAV K (UuV K'U @ KV K (Unv
-—>q+1( )'—’q("’)‘—’q q-—-’-q(n)—-»

for any two open sets U and V of X. Starting essentially from this point, Brown and
Gersten (see their paper in this procedings) construct a spectral sequence

BB - #P(x, Slq) == K! X
which reflects the fact that K'-theory is a sheaf of generalized cohomology theories in
a certain sense. In connection with this, we mention that Gersten has proposed defining
higher K-groups for regular schemes by piecing together the Karoubi-Villamayor theories
belonging to the open affine subschemes (see [Gersten 2J). Using the above Mayer-Vietoris

sequence and the fact that Karoubi-Villamayor K-theory coincides with ours for regular

rings, Gersten has shown - that his method leads to-the groups KqX = Kax studied here;

4, Affine and projective space bundles.

Proposition 4.1. (Homotogx EroEentz) Let £ : P-—~»X be a flat map whose fibres
are affine spaces (for example, a vector bundle or a torsor under a vector bundle). Then

f* 3 K&X -— K&P is an isomorphism,

Proof. If Z 1is a closed subset of X with complement U, then because f is flat

we have a map of exact sequences

—_— K&Z —— KK ey K&U —
i ¥ b
e K'P, ~=—s K'P w—gr K'P iy
L q qU
By the five lemma, the proposition is true for one of X, Z, and U if it is true for the
other two. Using noetherian induction we can assume the proposition holds for all closed
, with z1,22£x,

and X - Z1 =%, - (Z1/122), hence alsc for X. We

subsets Z £ X. We can suppose X 1is irreducible, for if X = Z1&JZ
then the proposition holds for Z1
can also suppose X reduced by 3.1,

Now take the inductive limit in the above diagram as Z runs over all closed subsets
# X. Then by 2.4, Jin;K('lU = K(‘l(k(x)) and ]:‘iﬂl,K('l?U = K&(k(x) xxP), where k(x) is the
residue field at x, and where x 1is the generic point of X. Thus we have reduced to
the case where X = Spec(k), k a field, and we want to prove K&k =b'K&(k[t1,..,tn]).

But this follows from §6 Th. 8 , so the proof is complete.
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4,2, Jouanolou's device, Jouanolou has shown that at least for a quasi-projective
scheme X over a field, there is a torsor P over X with group a vector bundle such
that P 1is an affine scheme. He defines higher K-groups for smooth X by taking the
Karoubi-Villamayor K-groups of the coordinate ring of P and showing that these do not
depend on the choice of P. From 4.1 it is clear that his method yields the groups

qu = K&X considered here.

Proposition 4.3, Let E be a vector bundle of rank r over X, let PE = Proj(SE)
be the associated projective bundle, where SE is the symmetric algebra of E, and let

f : PE - X be the structural map. Then we have a KO(PE)-module isomorphism

(4.4) xo(ps) QKQX K&X =, K;l(pa)

given by y @ x > y-f*x . Equivalently, if z¢€ KO(PE) is the class of the canonical

line bundle O(-1), then we have an isomorphism

r-1

(4.5) (x;lx)" = kEE) . (xdggice M %;ozi-f*xi .

Sketch of proof. The equivalence of 4.4 and 4.5 results from the fact that
KO(PE) is a free Kox-module with basis 1,..,zr-1, [SGA 6 VI 1.q . Using the exact
sequence 3.3 as in the proof of ‘4.1, one reduces to the case where X = Spec(k), k a
field. By the standard correspondence between coherent sheaves on PE and finitely
generated graded SE-modules, one knows that g(PE) is equivalent to the quotient of

" Modfgr(SE) by the subcategory of M such that M =0 for n large. This subcategory

has the same K-groups as the category Modfgr(k) by Theorem 4, wheve we view k-modulesas
SE-modules killed by the augmentation ideal. Thus from the localization theorem we have

an exact sequence
(4.6) —>  (Hodtgx(k)) —t oy K (Modgr(SE) ey &:(p8) —»

~
where i is the inclusion and j associates to a module M the associated sheaf M on

PE, From Theorem 6 we have the vertical isomorphisms in the square

Kq(Modt‘gt(k) ) —-i*—> Kq(Modt‘gr( SE))
fs s
zft] e ke —Es 2Z[t] 8 £k
Using the Koszul resolution
0~ SE(-r) @ ATEQ@H —> ..,.. —>SE@H —> H = O

and Tﬂ; 2, Cor. 3, one shows that the map h rendering the above square commutative is
multiplication by ’\-t(E) = Z (—t)i[/\iE] . Thus i, is injective, so from 4.6 we
get an isomorphism

11 tiQKc'lk =5 Ki(eE)

Osi<r
induced by the functors M p» 0(-1)® @M, O¥i<r fron Modf(k) to M(PE). This

gives the desired isomorphism 4.5.
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The following generalizes 3.1,

Proposition 4.7. Let f : X' =» X be a finite morphism which is radicial and
surjective (i.e. for each x in X- the fibre £ '(x) has exactly one point x' and
the residue field extension k(x')/k(x) is purely inseparable). Let S be the multi-

plicative system in Z generated by the degrees [k(x'):k(x)] for all x in X. Then
£, K"l(x') = KX induces an isomorphism s“x&(x') =~ s"x&x .

and U'
are the respective inverse images of 2 and U in X', then we have a map of exact

Proof. If Z is a closed subscheme of X with complement U, and if 2Z°'

sequences
—_— Ké(z')'—" K;l(x')——-» K&(U')—-—

l(fz),, l £, l(fu)*

— K7 K'X X'y
q q q

Localizing with respect to S and using the five lemma, we see that if the proposition
holds for two of fz, f, fU it holds for the third. Thus arguing as in the proof of 4.1
we can reduce to the case where X = Spec(k), k a field, By 3.1

X' = Spec(k'), where k' is a purely inseparsble finite extension of k.. Thus we have

reduced to the following.

Proposition 4.8. let f : k—» k' be a purely inseparable finite extension of

we can suppose

~-————dogree~piThen ‘f;f*"f'mu']:tiﬁl'tcﬁtiozr“bz'“"‘fs‘d“"b;ﬁ“‘l(ak“"‘@ PR, HL I pLIGAt o by T

d

on K {k').
P oo K (k')

Proof. The fact that f f* = multiplication by [k':k] is an immediate consequence
of the projection formuls g4 (5)
f*f, 1s induced by the exact functor
Vi ey = (k'@ k') @,V
from P(k') to itself. Since k'/k is purely inseparable, the augmentation ideal I of
k! Qk k' is nilpotent. Filtering by powers of I, one obtains a filtration of the above

functor with
vy e v .
n k

and does not use the purely inseparable hypothesis.
The homomorphism

gr{(x’ 8 ke, V) =

But because the two k'-module structures on In‘/Im‘1

coincide, this graded functor is
isomorphic to the functor V j» V5, where r = dimk,(gr(k‘ £, k') = pd. Applying Th. 2,
Cor. 2 to this filtration, we find f*f, = multiplication by pd, completing the proof.

5. Filtration by support, Gersten's conjecture, and the Chow ring. Let gp(x)
denote the Serre subcategory of r;i(x) consisting of those coherent sheaves whose support
> p. (The codimension of s closed subset Z of X 4is the infimm of
the dimensions of the local rings gx,z
From §2 (9) ‘and 3.1, it is clear that we have

is of codimension

where 2z runs over the gemeric points of Z.)

(5.1) Kq(gp(x)) = ]ini’K&Z
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‘contravariant for flat morphisms. Furthermore, if X = %i_m Xi , Wwhere i i—9Xi
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where Z runs over the closed subsets of codimension 2 p., We also have
(5.2) f*(Mp(X)) c gp(x') if £ :X'—»X is flat.

~1
In effect, one has to show that if Z has codimension 2> p in X, then f 'Z has
But if =z' is a generic point of f"Z, and z = f(z'), then
the homomorphism gx’z —-— Q-X',z' is a flat local homomorphism such that rad(gx’z)-%(,,z,
is primary for rad(Q z,); hence d.im(gx z) = dim(Q,, z,) by [EGA Iy 6.1.3], proving
’ ’

the assertion.

codimension » p in X'.

If X =1lim Xi where i ks )(i is a filtered projective system with affine flat
= "1
transition morphisms, then we have isomorphisms

(5.3) Lig £ (8 (£)) .

In view of 5.1
form f;‘ (Zi) for some 4, where 2, y
fi : X = xi denotes the canonical map. But for i large enough, one has Z = fi (Zi)
with Zi = the closure of fi(Z)' Hence any generic point 3' of Zi is the image of a
generic point 2z of Z, so the local rings at z' and 2z have the same dimension by the

also has codimension p, proving 5.3.

K (8,(%) =

this reduces to showing that any Z of codimension p in X 4is of the
is of codimension p in Xi , and where

result about dimension used above. Thus Zi

Theorem 5.4. be the set of points of codimension p in X. There is a

spectral sequence
(535)-mmm o

Let X
- P

x&X
4

which is convergent when X has finite (Krull) dimension. This spectral sequence is
is a

filtered projective system with affine flat transition morphisms, then the spectral
sequence for X is the inductive limit of the spectral sequences for the Xi .

In this spectral sequence we interpret Kn as zeroc for n<O0. Thus the spectral
prq € 0.

sequence is concentrated in the range p»0,

Proof, We consider the filtration

K(X) = go(x) > gD ...

of h_l(X) by Serre subcategories. There is an equivalence

B/, (0 = ;lZlZ LJ Moaf(Qy /rad(g, )%
P

so from Th. 4, Cor. 1, one has an isomorphism

K, 00/, () 2 1L ket

x&X
p
where k(x) is the residue field at x. From Th. 5 we get exact sequences
) X
— K, 00) — k@) — Llxee — x 0 0 —

X
xsp
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which give rise to the desired spectral sequence in a standard way. The functorality
aggertions of the theorem follow immediately from 5.2 and 5.3.

We will now take up a line of investigation initiated by Gersten in his talk at this
conference [Gersten 3J.

The following conditions are equivalent:

Proposition 5.6.
i) For every p>» 0, the inclusion M

(X) --)M (X) induces zero on Kwgroups.
ii) For all q, qu(x) =0 if p#0 and the edge homomorphism K' X — qu(x)
is an isomorphism.
iii) For every n the sequence

d
(5.7) 0 - KX - l I Kk(x) — l I K. k(x) —ls ...
xex xEX1

is exact. Here d1 is the differential on E1 () and e is the map obtained by

pulling-back with respect to the canonical morphisms Spec k(x) - X,

This follows immediately from the spectral sequence 5.5 and its construction.

Proposition 5.8. (Gersten) Let K denote the sheaf on X asssociated to_the

dd
presheaf U > &nU .

for all x in X. Then there is a canonical isomorphism

B0 = wxK )

Assume that Spec(Qq_X x) satisfies the equivalent conditions of 5.6
’

Dpa..
with LE‘\M as in 5.5,
Proof, We view the sequences 5.7 for the different open subsets of X as a sequence
of presheaves, and we sheafify to get a sequence of sheaves

(59 0 = & — 1L (),&x) — 11 ()

_1k(x)) —_— .
xex xCX

¢ Spec k(x) — X denotes the canonical map. The stalk of 5.9 over x is the
x , because Spec(('_)‘x ) = ; U, where U runs over the
affine open neighborhoods of X, and because the spectral sequence 5.5 commutes with

where i
sequence 5.7 for Spec(

such projective limits. By hypothesis, 5.9 is exact, hence it is a flask resolution of

Kl v s0
P = B s b [(x, _LL<1> k() )}

*ns

P {s b Ef"“(x)} )" (x)
as asserted.

The following conjecture has been verified by Gersten in certain cases [Gersten 3].

Conjecture 5.10. (Gersten) The conditions of 5.6 are satisfied for the spec trum

of s regular local ring.

Actually, it seems reasonable to conjecture that the conditions of 5.,6- hold more

generally for semi-local regular rings, for in the cases where the conjecture has been
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proved, the arguments also apply to the corresponding semi-local situation. On the other
hand there are examples suggesting that it is unreasonable to expect the conditions of
5.6 to hold for any general class of local rings besides the regular local rings.

We will now prove Gersten's conjecture in some important equi-characteristic cases.

Theorem 5.11. Let R be a finite type algebra over a field k, let S be a finite
is regular for each p in S, and let A be the

set of primes in R such that Rp
regular semi-local ring obtained by localizing R with respect to S. Then Spec A

" the points of S, hence also in an open neighborhood of S. Replacing R by ‘R, for

satisfies the conditions of 5.6,

Proof. We first reduce to the case where R 1is smooth over k., There exists a
subfield k' of k finitely generated over the prime field, a finite type k'-algebra
R', and a finite subset S' of Spec R' such that R =k ﬂk,R and such that the primes
in S are the base extensions of the primes in S'. If A' is the localization of R!'
with respect to S', then A=k ﬂk,A' and A' is regular, Letting ki run over the
subfields of k containing k' and finitely generated over the prime field, we have

= lm k.2 4' and K (MP(A)) = lim K, (M k@ A" )) by 5.3, where here and in the
followmg we write M (A) instead of L} (Spec A), Thus it suffices to prove the theorem
when k is finitely generated over the prme field. In this case A 1is a localization
of a finite type algebra over the prime field, so by changing R, we can suppose k is

the prime field. As prime fields are perfect, it follows that R is smooth over k at

some f not vanishing at the points in S, we can suppose R is smooth over k as

asserted,
We wish to prove that for any p»0 the inclusion M, (4) - b__@p(A) induces zero on
K-groups. By 5.3 we have
K, (a)) = um k0 (R))

where f runs over elements not vanishing at the points of S, hence replacing R by Rf,

we reduce to showing that the functor llip,n (®) —)ﬁp(A) induces zero on K-groups, As

KO, (R)) = lim k(4 (R/R))
where ¢ runs over the regular elements of R, it suffices to show that given a regular
element t, there exists an f, not vanishing at the points of S, such that the functor

W > M, from gp(a/tn) © rgp(n) induces zero on K-groups.
We will need the following variant of the normalization lemma.

Lemma 5.12, Let R be a smooth finite type algebra of dimension r over a field

k, let t be a regular element of R, and let S be a finite subset of Spec R . Then

there exist elements XyveosX o of R algebraically independent over k such that if

= k[x1,’..,xr_1] CR, then i) R/tR is finite over B, and 1i) R 4is smooth over B
at the points of S.

Granting this for the moment, put B'

= R/tR and R' =R 8;8' so that we have

arrows
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=

o T

B

|

where the horizontal arrows are finite. Let S5' be the finite set of points of Spec R!
lying over the points in S, As u is smooth of relative dimension one at the points of
S, u' 1is smooth of relative dimension one at the points of S', One knows then

[sGa 1 II 4.15] that the ideal I = Ker (R'—»B') is principal at the points of S,
hence principal in a neighborhood of S'. Since R'/R 1is finite, this neighborhood
contains the inverse image of a neighborhood of S in Spec R. Thus we can find f in

R not vanishing at the points of § such that If is isomorphic to R', as an R' .-

f f
module. We can also suppose f chosen so that R'f is smooth, hence flat, over B'.

Then for any B'-module M we have an exact sequence of Rf-modules

(*) 0 —> I8 H —> R' &K ~— K, —> 0.

£
Since R'f is flat over B', if M is in MP(B'), then RfQB,M is in M (R ), 80
viewed as an Ry-module, we have R'.@ M isin M (R ). Thus (*) is an exa.ct sequence
of exact functors from X (B ) to it (R ). Applying Th 2, Cor. 1, and using the isomor-
phism I, R'f , we conclude that the functor from I'=‘{p(B') to h={p(Rf) induces the
zero map on K~groups, as was to be shown,

can suppose § is a finite set of maxmal ideals of R. Let .(). be the module of Kahler

differentials of R over k. It is a projective R-module of rank r, and for R to be
smooth over B = k[x1..,xr_1] at the points of S means that the differentials d.xié _(21
are independent at the points of S, Let J be the intersection of the ideals in S. As

= Tr R/mn , mM€S, is finite dimensional over Xk, we can find a finite dimensional
k—subspace V of R such that for each m in S, there exists VyreesV, in V whose
differentials form a basis for .(2 at m vanishing at the other points of S, We can
suppose also that V generates R as an algebra over k.

Define an increasing filtration of R/tR by letting Fn(R/ tR) be the subspace
spanned by the monomials of degree € n in the elements of V. Then the associated
graded ring gr(R/tR) is of dimension r-1. To see this, note that Proj(_J_LFn(R/tR))
is the closure in projective space of the subscheme Spec (R/tR) of the affine space
Spec 5(V). Since R/tR has dimension r-1, the part of this Proj at infinity, namely
Proj{gr(R/tR)}, is of dimension r-2, so gr(R/tR) has dimension r-i as asserted.

Let 2,,00032 be a system of parameters for gr(R/tR) such that each z, is

r~i i
homogeneous of degree > 2. Then gr(R/tR) is finite over k[z1 ,..,zr_1], so if the z
are lifted to elements xj'. of R, then R/tR is finite over k[x{,..,xx'_ 1] .

By the choice of V, we can choose v1,..,v

i

et in V such that X = x' Y

1€ i< r, have independent differentials at the points of S, whence condition ﬁ.) of the

lemma is satisfied. On the other hand, the . xi have the leading terms Zi in gr(R/tR),

so R/tR is finite over k[x1,...xr_1]. The proof of the lemma and Theorem 5.11 is
now complete,
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Theorem 5.13. The conditions of 5.6 hold for Spec A when A is the ring of
formal power series kEX‘,...Xn]] over a field k, and when A is the ring of convergeut
power geries in X“..,Xn with coefficients in a field complete with respect to a

non-trivial valuation.

The proof is analogous to the preceding. Indeed, given O Ftea-= [xi,,,xn]] ,
then after a change of coordinates, A/tA becomes finite over B = k[[x1,.., 1]] by the
Weierstrass preparation theorem. Further, if we put A' =4 QBA./tA, then Ker(A' —» A/th)
is principal, so arguing as before, we can conclude that Iép(A/ th) = rgp(s.) induces zero
on K-groups. The argument also works for convergent power series, since the preparation
theorem is still available.

We now want to give an application of 5.11 to the Chow ring. We will assume known
the fact that the K1A defined here is canonically isomorphic to the Bass K1 , and in
particular that K‘A is canonically isomorphic to the group of units A®, when A isa

local ring or a Buclidean domain.
Proposition 5.14. Let X be a regular scheme of finite type over a field. Then the

— a, : _LL Kk(x -—»_U_Kk(x =_u_

' Zex ot xex e X,

in the spectral sequence 5.5 is the subgroup of codimens:.on P cycles which are

—-Tinearly-equivalent to zero. -Consequently - Ep *7"P(X) is.canonically isomorphic to the

group AP(X) of cycles of codimension p modulo linear equivalence.

Proof. Let P1 be the projective line over the ground field, and let t denote the
canonical rational function on P‘. Let c"(x) denote the group of codimension p
cycles. The subgroup of cycles linearly equivalent to zero is generated by cycles of the
form W_ - W , where W is an irreducible subvariety of X x P of codimension p such
that thz intersecuons W, = WAn(X x 0) and Wy = WA{X x @) are proper. We need a
known formula for ‘vl - w which we now recall.

Let Y. be the mage of W under the projection X x P1 -~ X, so that aim(Y) =
din(¥) or dim(¥) = 1 . In the latter case we have W =1Yx p' and W, - W = 0,80
we may assume dim(W) = dim(Y), whence Y has codimension "p - 1 in X. Let y be the
generic point of Y and w the generic point of W, so that x(w) is a finite extension
of k(y). Let t' be the non-zero element of k(w) obtained by pulling t back to W,
and letﬁ % be a point of codimension one in Y, whence 2‘{,:: is a local domain of

dimension one with quotient field k(y);- Then the formula we want is
(5.15) (multiplieity of x in W - Wm) = ordyx(Nomk(w)/k(y) )
where c>rdyx : k(y)' —Z is the unique homomorphism such that

ord . (£) = Llengtn{gy /ng <

for t‘éO , £ # 0. For a proof of 5.15 see [Chevalley. Pe 2—12]
From 5 15 it is clear that the subgroup of cycles linearly equivalent to zero is
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the image of the homomorphism

‘s _LLkm — 1z - cP)
yGX xcx
where if f&k(y)*, then #(f) = Zord (f)ex and we put ord =0 if xfm. Since
K‘k(y) = k(y)*, we see ¢ is a map from Ef‘"’P(x) to E{”‘P(x), s0 all that

remains to prove the proposition is to show that 4= d1 .

Let d1 have the components
(d1)yx s k(y)* = K ky) — Kok(x) =Z
for y in Xp_1 and x in Xp. We want to show that (d) =ordyx. Fix y in
X and let Y be its closure. The closed immersion Y —-»X carries M (1) to

1
—.)+p—1 (x) for all J» hence it induces a map from the spectral sequence S 5 for Y to

the one for X augmenting the filtration by p-1. Thus we get a commutative diagram

d
BP0l BPTRx) = oB(y)
0,-1 G, 1
Kk(y) = EPT(D) —— &7 = c'(¥)

which shows that (d1 )yx =0 unless x is in Y. On the other hand, if x is of
codimension one in Y, then the flat map Spec(gY x) -—>Y induces a map of spectral
btk ]

sequences, 80 we get a commutat:.ve d:.agram

S Oy d I 1 ,1_, [
Kx(y) = E,” gyt Ef THY)Y = 6 (Y)
] 1 multiplicity
- - of x
K, k(y) E?’ 1(9Y " i’—» E1' '(g J= Z

which shows that (d'l) is the map d, in the spectral sequence for Oy, - Therefore
the equality (d1 )yx = z)z'dyx is a consequence of the following.

Lemng 5.16. Let A be an equi-characteristic local noetherian domain of dimension

one with quotient field F and residue field k, and let

3
—,K'A—»K‘F—*Kk—)K'A%KF——)O

be the exact sequence 3.3 associated to the closed set Spec k of Spec A. Then
3: K F -—>K k is isomorphic to ord : F' ~» Z , where ord is the homomorphism such
that ord(x) length(a/xA) for x in 4, x £ 0.

Proof. We have isomorphisms K1F =F* and K1A = A® gsince A and F are local
rings, We wish to show 3(x) = ord(x) for x in A4, x #0. If x is in A®, this is
clear, as 9(x) = 0 since x is in the image of the map K1A -> K{A —>K1F » Thus we
can suppose X is not a unit. By hypothesis A 4is an algebra over the prime subfield
ko of k. If x were algebraic over ko » it would be a unit in A. Thus x is not

algebraic, so we have a flat homomorphism ko[t] ~~ A sending the indeterminate t to

X. By naturality of the exact sequence 3.3 for flat maps, we get a commutative diagram
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— Kk (] — Kk [ [£,£7'] —-.»KO _—

| L

—> K > KF 2

such that wu(t) = x. The homomorphism v is induced by sending a k -vector space V. to

the A-module

ko[t] k

and using devissage to identify the K-groups of the category of A-modules of finite
length with those of g(k). Thus with respect to the isomorphisms Kk =Kk=Z, v
is multiplication by length{A/xA) = ord(x) . Therefore it suffices to show that in the
top row of the above diagram, one has B(t) =4 1. But this is easily verified by
explicitly computing the top row, using the fact that KOR = Z and KiR =R' for a

Euclidean domain. g.e.d.

Remark 5.17. In another paper, along with the proof of Theorem ! of [Quillen 1.],
I plan to justify the following description of the boundary map 3 : KnF -> Kn-1k for a
local noetherian domain A of dimension one with quotient field P and residue field
k. By the universal property of the K-theory of a ring, such a map is defined by giving

for every finite dimensional vector space V over F a homotopy class of maps

(518 () — ()

compatible with direct sums. To do this consider the set of A-lattices in V, i.e.
finitely generated A-submodules L such that F &L =V. Let X(V) be the ordered set
of layers (LO,L1) such that 1,1/1‘o is killed by the maximal ideal of A, and put

G = Aut(V). Then G acts on X(V), so we can form a cofibred category X(V)G over G
with fibre X(V). One can show that X(V) is contractible (it is essentially a
'building'), hence the functor X(V)G -» G is a homotopy equivalence. On the other hand
there is a functor X(V)G — Q(g(k)) sending (LO’L‘I) to L-1/L° , hence we obtain the

desired map 5.18,
It can be deduced from this description that the Lemma 5.16 is valid without the

equi-characteristic hypothesis.
Combining 5.8, 5.11, and 5.14 we obtain the following.

Theorem 5.19. For a regular scheme X of finite type over a field, there is a

canonical isomorphism

Hp(x,l_cp) = aP(x) .
For p=0 and 1 this amounts to the trivial formulas HO(X,Z) =¢%X) and
g (X,(__)i) = Pic(X). For p =2 this formula has been established by Spencer Bloch in

certain cases (see his paper in this procedings).
One noteworthy feature about the formula 5.19 is that the left side is manifestly
contravariant in X, which suggests that higher K-theory will eventually provide the tool

for a theory of the Chow ring for non-projective nomsingular varieties.

137




130 54

§8. Projective fibre bundles

The main result of this section is the computation of the K-groups of the projective
bundle associated to a vector bundle over a scheme. It generalizes the theorem about
Grothendieck groups in LSGA 6 VI] and may be considered as a first step toward a higher
K-theory for schemes (as opposed to the K'-theory developed in the preceding section).
The method of proof differs from that of CEGA 6] in that it uses the existence of
canonical resolutions for sheaves on projective space which are regular in the sense of
[Mumford. Lecture 14]. We also discuss two variants of this result proved by the same
method., The first concerns the ‘projective line' over a (not necessarily commutative)
ring; it is one of the ingredients for a higher X generalization of the 'Fundamental
Theorem' of Bass to be presented in a later paper. The second is a formula relating
the K-groups of a Severi-Brauer scheme with those of the associated Azumaya algebra
and its powers, which was inspired by a calculation of Roberts.

1. The canonical resolution of a regular sheaf on PE, Let S be a scheme

(not necessarily noetherian or separated), let E be a vector bundle of rank r over

S, and let X = PE = Proj{SE) be the associated projective bundle, where SE 4is the
symmetric algebra of E over (=)S' Let (__?x(‘l) be the canonical line bundle on X and
f ¢ X -» S the structural map. We will use the term "X-module" to mean a quasi-coherent
sheaf of gx-modules, unless specified otherwise.

The following lemma summarizes some standard facts about the higher direct image
functors Rq'f we will need.

Lemma 1.1. a) PFor any X-module F, Rq'f*(F) is an S-module which is zerc for
q=T.
b) For any X-module F and vector bundle B’ on S, one has

i, (F) 0Bt = &, (F 8gE") . Q\r")
¢) For any S-module N, one has ‘
o} q#0, r-1

R, (0,(n) B N) = S.E 8y g= 0
(s\na) a@ r-1
\

where "w" denotes the dual vector bundle. ,’

a
]

d) If F is an X-module of finite type (e.g. a vector bundle), and if § is
affine, then F is a guotient of (O (-1) ) for some n, k.

Parts a),c) result from the standard Cech calculations of the cohomology of projec-
tive space [EC-A III 2] Part b) is/ obvious since locally E' is a direct sum of
finitely many copies of Qg For /d), see [EGA II 2,7. 10]

Following Mumford, we callfa.n X-module F regular if R (F(-q)) = 0 for q>0,
where as usual, F(n) = 9}( )ﬁn . For example, we have =x(n) 8 is regular for
n30 by c). /
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Lemme 1,2, Let O =—» F' — F - F" - 0 be an exact seguence of X-pgdulea.
;_)_—y_ F'(n) and F'(n) are regular, so is F(n).

b) If F(n) and PF'(n+1) are regular, so is ™(n).

¢) If Flael) and F*(n) are regular, and if £,(P(n)) = £,(F"(n)) is onto, the

F'(n+1) is regular.

Proof. This follows immediately from the long exact sequence

R (n-q)) —> R, (Fln=-q)) ~» R, (F'(n~q)) —= B3t (F'(n-q)) —» R¥"'t, (F(nq))

The following two lemmas appear in [Hu.mford, Lecture 14] and in [SGA. 6 XIII 1.3],
but the proof given here is slightly different.

Lemma 1.3. If F is regular, then F(n) is regular for all n20.

Proof. From the canonical epimorphism gX‘QSE —)2)((1) one has an epimorphism
(1.4) g (-1)eE —> 0o
30 we get an exact sequence of vector bundles on X
(1.55) 00— (1)@ AE — ... —> gf-1)8E —> o —>0

by taking the exterior algebra of _ (-1) 2 L with differential the mtemor product by

N

1.4, Tensoring with F we obtain an exact sequence
(1.6) 0~ F(-r) @ AE —>. .. —>F(-1)8E —»F —=0.

Assuming F to be regular, then (F(-p) ES/\PE)(p) is seen to be regular using 1.1 b).
Thus if 1.6 is split into short exact sequences

0 -2z, — F(-p) 8, N\E — Z,4 =0

we can use 1.2 b) to show by decreasing induction on p that Zp(p+1) is regular.
Thugs 2 (1) = P(1) 4is regular, so the lemma follows by induction on n.
°

Lemmg 1,7. If F is regular, then the canonical map O, 8.f,(F)—>F is surjective,
Proof. From the preceding proof one has an exact sequence
0 —> % —> F(-1)QSE —> F =30

where 2 (2) is regular. Thus R‘f*(Z,l(n)) =0 for n»i, so we find that the canonical
map f*(F(n-1))QsE - £,(P(n)) dis surjective for n21. Hence the canonical map of
SE~-modules

se £, (F) — 1| £,(7(n)

nz0
is surjective. The lemma follows by taking associated sheaves.

Suppose now that F is an X-module which admits a resolution
F 0
0> O(-r+1)8T , ~—> ... —> 08T —» F —»

where the Ti are modules on S, Breaking this sequence up into short ezact sequences
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and applying 1.2 b), one sees as in the proof of 1.3 that F has to be regular.
Moreover, the above exact sequence can be viewed as a resolution of the zerc module by
acyclic objects for the & ~functor qu*(?(n)), where n 1is any fixed integer > 0. Thus
on applying f, we get an exact sequence

0 = S B8Ny —> oo = SEQT — £,(Fn)) — 0
for each n»0. In particular, we have exact sequences
(1.8) 0 = T = EQT , —>. .. = £,(Fn)) — 0
for n=0,..., r-1 which can be used to show recursively that the modules Tn are
determined by F up to canonical isomorphism.
Conversely, given an X-module F, we inductively define a sequence of X-modules
Z = Zn(F) and a sequence of S-modules T, = Tn(F) as follows. Starting with Z_, = F,

let Tn = f‘(,(Zn_1 (n)), and let Zn be the kernel of the canonical map gx(-n)ﬂs’l‘n-) Zn—‘l'
It is clear that Z!’1 end T ~are additive functors of F.

Supposing now that F is regular, we show by induction that Zn(n+1) is regular,
this being clear for n = -1, We have an exact sequence

(1.9) 0 ~—r Zn(“) — 0 8T L Zn_1(n) - 0

where the canonical map ¢ is surjective by 1.7 and the induction hypothesis. By 1.3,
1.2 ¢) we find that 2.(n#1) is regular, so the induction works. In addition we have

(1.10) £,z (n)) = 0 for n3o0

because ¢ induces an isomorphism after applying £, .
From 1.9 and the fact that f, is exact on the category of regular X-modules,

one concludes by induction that F )-yTn(E‘) is an exact functor from regular X-modules
to S-modules.

We next show that Zr_1 = 0. From 1.9 we get exact sequences

RQ"If*(Zm_q_‘(n)) _;‘.'.,. _qu*(Zn+q(n)) — qu*(gx(-q)ﬂsTn+q)

which allow one to prove by induction on q , starting from 1.10, that qu,(qu(n)) =0
for q,n3»0. This shows that Zr—1 (r-1) 1is regular, since Rq'f* is zero for q2r. By
1,10 and 1.7 we have Zr_1(r-1) =0, 8 Z_, =0 as was to be shown.

Combining the exact sequences 1.9 we obtain a canonical resolution of the regular
sheaf F of length r - 1. Thus we have proved the following.

Proposition t.11. Any regular X-module F has a resolution of the form

0 = Ol-ret)8l ((F) = o . = 08N (F) —» F om0

where the Ti(F) are S-modules determined up to unique isomorphism by F. Horeover

F s Ti(F) is an exact functor from the category of regular X-modules to the category
of S-modules.

The next three lemmas are concerned with the situation when F is a vector bundle
on X.
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Lemma 1.12. Assume S is quasi-compact. Then for any vector bundle F on X,
there—e;ts an integer n, such that for all S-modules N and’ nzn, one has

a) R, (F(n)el) =0 for a>0

b)  £,(F(n))eN = £, (F(n)2N)

e) f£,(P(n)) is a vector bundle on S.

i ffines, it suffices to prove
Proof. Because S is the union of finitely many open.a , ( )k o
the lemma when S is affine. In this case F is the quotient of L= gx -n
n and k by 1.1 d), Thus for any vector bundle F on S, there is an exact sequence
of vector bundles
0 pF' ==L =—pF -0
such that the lemma is true for L by 1.1, Since

0 - F'(n)QSN —>L(n)ﬁSN —-»F(n')ﬂsl‘l w0

is exact, we have an exact sequence
\ -+
%, (L(n)e) —> R, (F(n)eg) — RY"' e, (P (n)ogN)
1
80 part a) - can be proved by decreasing induction on gq, a8 in the proof of Serre's
theorem [EGA III 2.2.1]. Using a) we have a diagram with exact rows
£,(F'(n))agl —> £,(L(n))egN —> £,(F(n))og —> O
u' S u
TS L (P (n)ggl) £,(L(n)ggN) - —> £, (F(n)ed) —> 0

and all N. Hence wu is surjective; applying this to the vector

for n 2> some n : ’
bundle F', we see that w' is surjective, hence u is bijective for n 2> some o

and all N, whence b). By a), f*(F(n)ﬁSN) is exact as a functor of N for sufficisnt-

. On the other hand
1y large n, whence using b) we see f,(F(n)) is a flat Qg-module .

ig of finite type.
£,(F(n)) is a quotient of £,(L(n)) for n »some 1, 80 £, (P(a)) 1is - pt1
Applying this to F' we see that £,(P(n)) is of finite presentation for all sufficiently
But & flat module of finite presentation is a vector bundle, whence c)e

large n. |
Lenma"l.l}. If F is a vector bundle on X such that R%,(F(n)) =0 for q>0,

030, then f,(F(n)) is & vector bundle on S for all n20.
Proof. The assertion being local on S, one can suppose S affine, whence ' f,(F(n))

is a vector bundle on S for large n by 1.12 ¢). Consider the exact sequence
,0 = Fn) —= F(n+1)ﬁSEv-—>. Jpp— F(n+r)ﬁs/\rEv — 0
obtained by ter;soring F(n) with the dual of the sequence 1.5, For n20, this is a
resolution of the zero module by acyclic modules for the & ~functor qu* , hence one
knows that on applying £, one gets an exact sequence
0 = £,(F(n)) —> . —> £, (F(ner))ag\N'E —> 0«
PTherefore one can show £,(F(n)) is a vector bundle for all n¥0Q by decreasing

induction on n.
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Lemma 1,14, If F is a regular vector bundle on X, then Ti(F) is a vectdr
bundle on S for each i.

This follows by induction on i, using the exact seqﬁences 1.8 and the lemms 1.13,

2. The grojective bundle theorem. Recall that the K-groups of a scheme are

naturally modules over Ko by B3 (1). The following result generalizes [SGA 6 VI 1.1].

Theorem 2,1. lLet E be a vector bundle of rank r over a scheme S and X =

Proj(SE) the associated projective scheme. If S is quasi-compact, then one has
isomorphisms

(k 5)° 29 KX (a,) rf i e
q q ’ 1/0gicr ""i=oz'fai

where zeKOX is the class of the canonical line bundle (=)x(-1) and f : X -»8 is the

structural map.

Proof. Let P denote the full aubcategory of P(x) consisting of vector bundles
F such that R% (F(k)) O for q#0 and k3n. Let R denote the full subcategory
of P(X) consisting of F such that F(n) is regular. Ee.ch of these subcategories is
closed under extensions, so its K-groups are defined.

Lemma 2.2. For all n, one has isomorphisms: K (l}n) = k (p)2 K (p(x))
induced by the inclusions R <P BX). e e e

To prove the lemma, we consider the exact sequence
(23) 0 F P — ... —>Frleg/\'E —>0.

For each pp>0, Fi» F(p)ﬁ /\pE is an exact functor from gn to P 1 hence it
Py = =n—
1Enduces a ;S::omorphism up i K (P ) -)Kq(Pn 47 From Th. 2, Cor. 3 it is clear that
,o(-1) u_ is an inverse to the map induced by the inclusion of By in B .
=n
Thus we have X (P 1) 5K (P ) for all n, By 1.12 a), B(X) is the union of the
B, soby § (9) we have K np =K (P(x)) for all n, The proof that K (R )=

K (P(X)) is similar, whence the lemma
Put U (N) -n)QsN for N in p(s) For 0gn<r, U is an exact functor
fron P(s) to P by 1.1 ¢}, hence it induces a homomorphism u K (P(S)) K (P ).

In view of 2.2, it suffices for the proof of the theorem to show tha.t the homomorph:.sm
: K (p(s)T
QBT =k (B) , (a)ocnc, P Z

is an isomorphism.

From 1.13 we know that Vn(F) = £, (P(n)) is an exact functor from P_ to P(S)
for n20, hence we have a homomorphism - )

v: Kq(go) - Kq(g(s)) , b (v (x))
where Y. is induced by Vn. Since

VU, () = £,(0 (n-m)e) = S, n(B 8N

ognr *
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by 1.1 ¢), it follows that the composition wvu is described by a triangular matrix with
ones on the diagonal, Therefore wvu is an isomorphism, so u is injective.
On the other hand, T is an exact functor from R to g(s) by 1.11 and 1.14,
hence we have a homomorphism
v KR) —> KRS, x> (0,0 ) ne
where t is induced by T . Applying Th. 2, Cor. 3 to the exact sequence 1.11, we

see that the composition ut is the map K (R )-—o-K (P } induced by the inclusion of

go in go By 2.2, ut is an isomorphism, so u is sur;)ective, concluding the proof.

The Broﬂective line over a rinE. Let A be a (not necessarily commutative) ring

let t be an indeterminate, and let
i i
aft] — aft,t7'] 32— aft"']

denote the canonical homomorphisms. When A is commutative, a quasi-coherent sheaf on
P; Proj(alX ,X,]) may be identified with a triple F = (", 1,0), where K¢ Moa (aft]),
M eMod(A[t'1_]) and O : *(M ) =% i*(M } is an isomorphism of Alft,t” ]-modules. Fol-
lowing [Bass XII §9J we det‘ine Mod(P‘) for A non-commutative to be the abelian
category of such triples, and we defme the category of vector btundles on P1 , denoted
P(P ), to be the full subcategory consisting of triples with M te P(A[t]), M eP(A[t 1]

Theorem 3.1, Let h : B(A) — P(PA) be the exact functor sendmw P to the
triple consisting of P[t] A[t]ﬁ P, P[t ] and multiplication by £ on P[t t _]

Then one has isomorphisms

(kA 2 K (BED) , (E53) b))+ 1))

and the relations
(3.2) (hn)* - 2(hn_1)* + (hn_z)* = 0

for all n.

When A is commutative, this follows from 2.1, once one notices that h (P) is the
module O (n)ﬂSP . For the non-commutative case, one modifies the proof of 2. ‘I in a
straightforward way. For example, if F = (x*,17,8);, we put PF(n) = (17, + ™), and let
X%y 8 F(n-1) =» F(n) be the homomorphisms given by X =1 on W oend t on N ,
X1 t on vt and 1 on M ). Then we have an exact sequence

. (X=X ) X pry + X pr

0 — F(n=2) .__1_._."_.,\5'(,,_1)2 SR T F(n) ——a0
correéponding to 1.6, which leads to the relations 3.2, Also using the fact that qu*
can be computed by means to the standard open affine covering of P1 , we can define
Rq'f,(f‘) in the non-commutative case to be the homology of the complex concentrated in
degrees O , | given by themap d : M x N —> 7). alxy) = o(igx) - 1@y .
One therefore has available all of the tools used in the proof of 2.1 in the non-commu-
tative case; the rest is straightforward checking which will be omitted.
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4. Severi-Brauer schemes and Azumaya algebra . Let S5 be a scheme and let X be

a Severi-Brauer scheme over S of relative dimension r-1. By definition X is an
S-scheme locally isomorphic to the projective space Pé“

(see [Grothendieck]), and it is essentially the same thing as an Azumaya algebra of rank
r® over S. We propose now to generalize 2.1 to this situation.
When there exists a line bundle L on X which restricts to O(-1) on each

for the etale topology on S.

geometric fibre, one has X = PE, where E is the vector bundle f,,hv on S, f:X=5
being the structural map of X. In general such a line bundle L exists only locally for
the etale topology on X. However, we shall now show that there is a canonical vector

bundle of rank r on X which restricts to O(- 1)r bon each geometric fibre.
Let the group scheme GL S act on Qg in the standard way, and put Y= S -1 =
Proa(S(O ). The induced action on Y factors through the projective group
PGLr,S = GLr.S/Gm,S . Since Gm,S acts trivially on the vector bundle QY(-i)QSgr ,
the group I-’GLr s operates on this vector bundle compatibly with its action on Y, As
?

X is locally isomorphic to Y for the etale topology on S and PGL is the group

of automorphisms of Y over S, one knows that X is the bundle overr'g with fibre Y
associated to a torsor T under PGLr,S locally trivial for the etale topology. Thus
by faithfully flat descent, the bundle gY(—1)ﬁsg§ on Y gives rise to a vector
bundle J on X of rank r.

It is clear that the construct:.on of J is compat:.ble with base change and that

( 1)033 if X = PE In the general case there is a cartesxa.u square

v
X"——i-»x

4Tk

St bt s s

where g 4is faithfully flat (e.g. an etale surjective map over which T becomes trivial)
such that X' = PE for some vector bundle E of rank r on S', and further

e'"(3) = g (-1)8E .
Let A be the sheaf of (non-commutative) Qg-algebras given by
A = £,(End (3))°P

where ‘'op' denotes the opposed ring structure. As g is flat, we have grf, = fig™ .,
Hence we. have

e (A)P = £ (End, (g, (~1)8G,E)) = £1,(0; %, Bnd,(B)) = End,(E) ,
hence A is an Azumaya algebra of rank r2 over 5. Moreover one has
End, (7)°P
as one verifies by pulliﬁg back to X',

Let J (resp. A) be the n-fold tensor product of J on X (resp, A on 8), so
that An is an Azumaya algebra of rank (r ) such that
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op op
A, = £,(Bad (3 N7, £x(ay ) = End, (5))7 .
Let P(A ) denote the category of vector bundles on S which are left modules for A .
Since J is a right £*(4 )-module. which locally on X is a direct summand of f*(A ),
n

we have an exact functor

J 8,7 ¢ Ba) — RX)

oAy

and hence an induced map of K-groups.

M) .
o J Qf*('*n)f*( )

Theorem 4.1, If S is quasi-compact, one has isomorphisms

-1 r=1
FIEXCR S ACRCR I SRR
n=20

This is.ac.:tually a generarlization of 2;'1 ”because if two Azumaya aigebras A,B
represent the same element of the Brauer group of S, then the categories E(A), Z(B) are
equivalent, and hence have isomorphic K-groups. Thus Ki(g(An)) = Ki(S) for all n if
X is the projective bundle associated to some vector bundle. ‘

The proof of 4.1 is a modification of the proof of 2.,1. One defines an X-module
F to be regular if its inverse image on X' = PE is regular. For s regular F one

constructs a sequence

(4,2) © -—rJr_,IQAP-1Tr_1(F) —> oo => O8I (F) => F —> 0

recursively by )
T (F) = £,(Homg(7,2, ((F))) 5 Z,(F) = Ker {JnﬁA 1,(F) — 2, ()}
starting with 2_ (F) = F. It is easy to see this sequence when lifted to X' coincides
the the ca.nom.cal resolution 1.11 for the inverse image of F on X'. Since X' is

faithfully flat over X, 4.2 4s a resolution of F.
We note also that there is a canonical epimorphism J = 2)( obtained by descending

1.4, and hence a canonical vector bundle exact sequence
r
0= AT = . vi = J — 4 — 0
on X corresponding to 1.5. Therefore it should be clear that all of the tools used in

the proof of 2.1 are available in the situation under consideration; the rest of the

proof of 4.1 will be left to the reader.

Example: Let X be a complete non-singular curve of genus zero over the field
= HO(X,(__)X‘) , and suppose X has no rational point. Then X is a Severi-Brauer scheme
over k of relative dimension one, and J is the unique indecomposable vector bundle of
rﬁnk 2 over X with degree -2, The above theorem says v
k(%) = K (k) @K (4)
where A is the skew-field of endomorphisms of J. This formula in low dimensions has
been proved by Leslie Roberts ([Roberts] e

145




138 62

References
S m——

H. Bass: Algebraic K-theory, Benjamin 1968.
S. Bloch: K2 and algebraic cycles, these procedings.
K. Brown and S. Gersten: Algebraic K-theory as generalized sheaf cohomology, these

procedings.

C. Chevalley: Les classes d'equivalence rationelle I, Exp. 2, Séminaire Chevalley 1958,
Anneaux de Chow et applications, Secrétariat mathématique, Paris.

A. Dold and R. Lashof: Principal quasifibrations and fibr_e homotopy equivalence of
bundles, Ill. J. Math. 3 (1959) 285-305.

F. T. Farrell and W. C. Hsiang: A formula for K1Rd[T] s Applications of categorical
algebra, Procedings of symposia in pure mathematics XVIII (1970), Amer. Math. Soc.

E. Friedlander: Fibrations in etale homotopy theory, Publ. Math. I.H.E.S. 42 (1972).
P. Gabriel: Des categories abeliennes, Bull. Math. Soc. France 90 (1962) 323-448.

P. Gabriel and M. Zisman: Calculus of fractions and homotopy theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 35, Springer 1967.

S. Gersten.1: .The relation between the K-theory of Karoubi and Villamayor and the

K-theory of Quillen \preprint).

w=——= 2: K-theory of regular schemes, Bull. Amer. Math. Soc. (Jan. 1973).

-—~— 3: On some exact sequences in the higher K-theory of rings, these procedings.
--=-- 4: Problems about higher K-functors, these procedings.

~~——= 5: Higher K-theory of rings, these pré)cedings.

A. Grothendieck: Le groupe de Brauer I, Dix exposés sur la cohomologie des schémas,
North-Holland Publ. Co., 1968.

A. Heller: Homological algebra in abelian categories, Ann, of Math, 68 (1958) 484-525.

J. Milnor 1: The realization of a semi-simplicial complex, Ann. of Math. 65 (1957)
357=-362.

---— 2: On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90
(1959) 272-280.

D. Mumford: Lectures on curves on an algebraic surface, Annals of Math. Studies 59 (1966).

D. Quillen 1: Higher K-theory for categories with exact sequences, to appear in the
procedings of the June 1972 Oxford symposium "New developments in topology".

—-=—= 2: On the cohomology and K-theory of the general linear groups over a finite
field, Ann. of Math. 96 (1972) 552586,

--—= 3¢ On the endomorphism ring of a simple module over an enveloping algebra, Proc,

146

139 . 63

Amer. Math. Sec. 21 (1969) 171-172.

L. Roberts: Real quadrics and K,‘ of a curve of genus zero, Mathematical Preprint No.
1971-60, Queen's University at Kingston.

G. Segal 1: Classifying spaces and spectral sequences, Publ. Math. I.H.E.S. 34 (1968)
105-112.

-——— 2: Categories and cohomology theories, preprint, Oxford 1972.

R. G. Swan: Algebraic K~theory, Lecture notes in Math. 76 (1968).

J. Tornehave: On BSG and the symmetric groups (to appear).

EGA: Elements de GEométrie Algébrique, by A. Grothendieck and J. Dieudonné

BGA II: Publ. Math. I.H.E.S. 8 (1961)

EGA III (first part): ——— 11 (1961)

EGA IV (third part): =-—— 28 (1966) .

SGA: Séminaire de Géomdtrie Algébrique du Bois Marie, by A. Grothendieck and others

SGA 1: Lecture Notes in Math, 224 (1971)

SGA 6: — 225 (1971)

SGA 2: Cohomologie locale des faisceaux cohérents et Théorémes de Lefschetz locaux

et globaux, North~Holland Publ. Co. 1968.

Massachusetts Institute of Technology

147




