1

Finite generation of the groups K. of rings of algebraic integers

Daniel Quillen*

\$1 Statement of results

The title refers to:

THEOREM 1: If A is the ring of algebraic integers in a number field F (finite over \mathbb{Q}) then K_i^A is a finitely generated group for all $i \geq 0$.

Remarks: (1) The proof uses the definition of the groups K_1A , as $K_1P(A)$, given in [Quillen 1, §2]. Here P(A) denotes the "exact category" of finitely generated projective A-modules.

(2) If B is the ring of S-integers relative to some finite set S of finite primes of F then we have the localisation sequence [Quillen, 1, \$5, Cor. to Thm. 5],

$$\cdots \to K_{i}^{A} \longrightarrow K_{i}^{B} \longrightarrow \coprod_{\varphi \in S} K_{i-1}^{(A/\varphi)} \longrightarrow K_{i-1}^{A} \longrightarrow \cdots$$

From [Quillen, 2, Thm. 8] one knows the K-groups of the finite

^{*}Text prepared by H. Bass from Quillen's lecture at the Battelle Conference September , 1972.

fields A/ \mathscr{G} , whence one concludes that $K_iA \to K_iB$ has finite kernel (which is zero for i even, > 0) and finite cokernel for i > 1. In particular K_iB is finitely generated, and of the same rank as K_iA for $i \neq 1$.

- (3) The ranks of the groups K_iA have been computed in [Borel, Cor. of Thm. 2]. Conjectures about the arithmetic significance of the torsion subgroups of the K_iA can be found in [Lichtenbaum].
- (4) The proof of Theorem 1 yields the analogous result for a maximal order in a semi-simple F-algebra (cf. the end of §3).

To explain how Theorem 1 is deduced we must introduce the <u>building</u> of a vector space V, say of dimension n, over a field (or a division ring) F. It is the simplicial complex, here denoted \boxed{V} , associated to the set of proper subspaces W of \boxed{V} (0 < W < V), (partially) ordered by inclusion. Thus a p-simplex of \boxed{V} is a chain 0 < $\boxed{W}_0 < \cdots < \boxed{W}_p < V$ of proper subspaces \boxed{W}_1 of V. If $n \le 1$ then $\boxed{V} = \emptyset$; if n = 2 then \boxed{V} is the projective space $\boxed{F}(V)$ of lines in V, as a discrete space.

THEOREM 2 (Solomon-Tits, cf. [Solomon]): Suppose $n \ge 2$.

Then V has the homotopy type of a bouquet of (n-2)-spheres.

We shall give a proof of this below, since some of the details are needed for other arguments.

It follows that \boxed{V} has zero reduced (integral)homology except in dimension n-2, where we obtain a free \mathbf{Z} -module $H_{n-2}(\boxed{V})$ on which GL(V) naturally acts. This is called the Steinberg module of V, here denoted SL(V). For SL(V) we agree to put SL(V) = SL(V) with trivial action of SL(V).

Now let A be a Dedekind ring with field of fractions F. For each $n \ge 0$ let Q_n denote the full subcategory of $Q = Q\underline{P}(A)$ whose objects are the projective A-modules P of rank $\le n$. Thus Q_0 is equivalent to the trivial category, $Q_n \subset Q_{n+1}$, and $Q = \bigcup_n Q_n$. The main result to be proved below is the following.

THEOREM 3: Let $n \ge 1$. The inclusion w: $Q_{n-1} \to Q_n$ induces a long exact sequence

$$\cdots \longrightarrow {}^{\mathsf{H}_{\mathsf{i}}\mathsf{Q}_{\mathsf{n}-1}} \longrightarrow {}^{\mathsf{H}_{\mathsf{i}}\mathsf{Q}_{\mathsf{n}}} \longrightarrow \coprod_{\alpha} {}^{\mathsf{H}_{\mathsf{i}-\mathsf{n}}} (\mathrm{GL}(\mathtt{P}_{\alpha}), \mathsf{st}(\mathtt{V}_{\alpha})) \longrightarrow {}^{\mathsf{H}_{\mathsf{i}-1}\mathsf{Q}_{\mathsf{n}-1}} \longrightarrow \cdots,$$

where the P_{α} 's represent the isomorphism classes of projective A-modules of rank = n, and where $V_{\alpha} = P_{\alpha} \otimes_{A} F$.

Remarks: (1) For any (essentially)small category C we put $H_*C = H_*(BC, \mathbb{Z})$, where BC is the classifying space

(= geometric realisation of the nerve) of C in the sense of [Quillen, 1, \$1].

- (2) The structure theory of projective modules over Dedekind rings implies that $P_{\alpha} \mapsto \det P_{\alpha} = \Lambda^n P_{\alpha}$ defines a bijection from the set of P_{α} 's to Pic(A).
- (3) The proof we give of Theorem 3 applies, more generally, when A is a maximal order, over a Dedekind domain, in a division algebra F. The corollaries of the theorem drawn below likewise apply in that generality.

COROLLARY ("Stability"). The homomorphisms $H_iQ_n \to H_iQ_{n+1}$ are surjective for n > i and injective for n > i + 1.

Proof of Theorem 1 from Theorem 3.

Suppose now that F is a finite dimensional division algebra over Q and that A is a maximal order in F.

Let $P \in \underline{P}(A)$ and put $V = P \otimes_A F = P \otimes_{\overline{Z}} Q$. Then $\Gamma = GL(P)$ is an arithmetic subgroup of G(Q), where G is the reductive algebraic group over Q whose rational points in a Q-algebra R form the group $G(R) = GL(V \otimes_{\overline{Q}} R)$ of $F \otimes_{\overline{Q}} R$ -automorphisms of $V \otimes_{\overline{Q}} R$. Let S denote the connected component of the kernel of the norm homomorphism $G \to G_m$ (the norm being that of the Q-algebra $End_F(V)$). Then S is a connected reductive algebraic group, with no non-trivial characters, defined over Q, and so it is subject to the result of

[Borel-Serre]. Since $\Gamma \cap S(\mathbb{Q})$ has finite index in Γ (the elements of Γ having norm ± 1) we can find a normal torsion free subgroup Γ' of Γ of finite index in $\Gamma \cap S(\mathbb{Q})$.

According to Théorème 3 of [Borel-Serre] we have for any Γ' -module M and any i, a duality isomorphism

$$H_i(\Gamma',I\otimes M)\cong H^{d-\ell-i}(\Gamma',M)$$
.

Here ℓ denotes the \mathbb{Q} -rank of S, d the dimension of $S(\mathbb{R})$ modulo a maximal compact subgroup, and I is the Steinberg module of the Tits building T whose simplices correspond to the parabolic subgroups of S defined over \mathbb{Q} . There is a natural isomorphism, in the present case, $\mathbb{V} \to T$, such that the simplex $\mathbb{W}_0 < \cdots < \mathbb{W}_p$ of \mathbb{V} corresponds to its stabilizer in S, which is a parabolic subgroup defined over \mathbb{Q} . This isomorphism permits us to identify I with st(V), and so deduce isomorphisms

(1)
$$H_{i}(\Gamma', st(V)) \cong H^{d-\ell-i}(\Gamma', \mathbf{Z}).$$

Now according to [Raghunathan, Cor. 3] the groups $H^{j}(\Gamma',M) \text{ are finitely generated for all j whenever M is finitely generated over Z. Actually [Raghunathan] does not apply directly here because S is not semi-simple. However there is an exact sequence <math>l \to \Gamma_S \to \Gamma' \to \Gamma_t \to l$ where Γ_S is arithmetic in a semi-simple group and where Γ_t is finitely

generated abelian. Then the groups $H^{q}(\Gamma_{s},M)$ are finitely generated by [Raghunathan] so the spectral sequence $H^{p}(\Gamma_{t},H^{q}(\Gamma_{s},M))\Rightarrow H^{p+q}(\Gamma',M)$ gives finite generation of the latter. Taking $M=\mathbf{Z}$ we obtain from (1) the finite generation of the groups $H_{i}(\Gamma',st(V))$. Then the homology spectral sequence $H_{p}(\Gamma/\Gamma',H_{q}(\Gamma',st(V)))\Rightarrow H_{p+q}(\Gamma,st(V))$ yields, since Γ/Γ' is finite, the finite generation of $H_{i}(\Gamma,st(V))$, which we now record:

(2) If
$$P \in \underline{P}(A)$$
 and $V = P \otimes_A F$ then
$$H_i(GL(P), st(V)) \text{ is a finitely}$$
generated group for all i.

The Jordan-Zassenhaus theorem (see, for example, [Bass, Ch. X, Thm. (2.4)]) implies that the set $\{P_{\alpha}\}$, representing isomorphism classes of projective A-modules of rank n, is finite. Hence by (2), the groups

$$L_{i} = \coprod_{\alpha} H_{i}(GL(P_{\alpha}), st(V_{\alpha})),$$

where $V_{\alpha} = P_{\alpha} \sim_{A} F$, are finitely generated. For $n \ge 1$, Theorem 3 furnishes a long exact sequence

$$\cdots \rightarrow \mathbf{L_{i+1-n}} \rightarrow \mathbf{H_i} \mathbf{Q_{n-1}} \rightarrow \mathbf{H_i} \mathbf{Q_n} \rightarrow \mathbf{L_{i-n}} \rightarrow \cdots$$

7

Since $H_0Q_0 = \mathbf{Z}$ and $H_iQ_0 = 0$ for i > 0 we conclude by induction on n that

(3)
$$\begin{array}{c} \text{H}_{i}Q_{n} \text{ is finitely generated for all} \\ \text{i and } \text{n.} \end{array}$$

Fixing i and letting $n \to \infty$ we obtain the finite generation of $H_1QP(A)$.

Now \oplus : $\underline{P}(A) \times \underline{P}(A) \to \underline{P}(A)$ gives to $BQ\underline{P}(A)$ the structure of a homotopy associative and commutative H-space. Hence the finite generation of its homology implies that of its homotopy, whence $K_{\underline{i}}A = \pi_{\underline{i}+\underline{l}}(BQ\underline{P}(A),0)$ is finitely generated, thus proving Theorem 1.

\$2 The Solomon-Tits theorem.

We fix here a division ring F and a (right) vector space V of dimension $n < \infty$ over F. Let \widehat{V} denote the simplicial complex associated to the set of <u>all</u> subspaces of V, ordered by inclusion. It is contractible since, for example, V has a least subspace O [Quillen, 1, \widehat{b} 1, Cor. 2 of Prop. 2]. Its p-simplices are chains

$$W_0 < \cdots < W_p$$

8

of subspaces. We distinguish the following subcomplexes of $\overline{\mathbb{V}}$ by the indicated restrictions on their simplices (1):

It is readily seen that, for $n \ge 2$,

where "~" denotes homotopy equivalence.

Proof of Theorem 2:

We argue by induction on $n \ge 2$. For n = 2 the discrete space V is trivially a bouquet of 0-spheres, so assume $n \ge 3$. Fix a line L in V and let H denote the set of hyperplanes H of V complementary to L: $V = H \oplus L$. Let Y denote the full subcomplex of V obtained by deleting the set of vertices H.

Claim. Y is contractible.

In fact, let $q: V \to V/L$ be the canonical projection. It induces a simplicial map $q: Y \to V/L$, and the latter cone is contractible. Hence it suffices, by [Quillen, 1, \$1, example following Theorem A], to show that $q^{-1}(\sigma)$ is contractible for each closed simplex $\sigma = (W_0/L < \dots < W_p/L)$ of V/L. If U is a vertex of $q^{-1}(\sigma)$ then, for some i, we have $qU = W_1/L$, i.e. $U + L = W_1$. Thus $U \mapsto U + L$ defines a simplicial map from $q^{-1}(\sigma)$ to the simplex with vertices $W_0 < \dots < W_p$, and the relations $U \le U + L$ show that this map is homotopic to the identity of $q^{-1}(\sigma)$ [Quillen, 1, \$1, Prop. 2]. This proves the claim.

Now we have the following schematic picture of V:

Let $H \in \underline{H}$. Let Link(H) denote the subcomplex of V formed by simplices σ such that $H \not\in \sigma$ but $\sigma \cup \{H\}$ is a simplex. Evidently Link(H) $\subset Y$. Further V is the union of Y with the cones over these links, amalgamated along the links, as V waries over V. From the claim above we thus obtain

$$\nabla \simeq \nabla / \Upsilon$$

$$\simeq \int_{H \in \underline{H}} \operatorname{Susp} \left(\operatorname{Link} (H) \right).$$

But clearly Link(H) = \boxed{H} for $\mathbf{H} \in \underline{H}$. Thus the theorem follows by induction, since dim $\mathbf{H} = \mathbf{n} - \mathbf{1}$

Let J(V) denote the set of proper layers (W_0, W_1) of V $(0 \le W_0 \le W_1 \le V \text{ and } \dim(W_1/W_0) < n)$, ordered by $(W_0, W_1) \le (W_0', W_1')$ if $W_0' \le W_0$ and $W_1 \le W_1'$. For n = 1 it is the "unrelated" set consisting of (0,0) and (V,V), whence $BJ(V) = S^0$.

PROPOSITION: Suppose n > 2. There is a GL(V)-equivariant homotopy equivalence

$$\overrightarrow{V} \longrightarrow BJ(V)$$

Define a map g from the set Simpl \overrightarrow{V} of simplices of \overrightarrow{V} , ordered by inclusion, to J(V), by

$$g(W_0 < \cdots < W_p) = (W_0, W_p)$$

Clearly g is order preserving, i.e. a functor (where we view ordered sets as categories) and it is also GL(V)-equivariant. Since BSimpl(K) is canonically homeomorphic to the barycentric subdivision of K, for any simplicial complex K (cf. [Quillen, 1, \$1]) the proposition will follow if we show that Bq is a homotopy equivalence. For this it suffices, by [Quillen, 1, \$1, Theorem A], to show, for each (U_0, U_1) \in J(V), that the category $g/(U_0, U_1)$ is contractible (i.e. that its classifying space is so). The objects of $g/(U_0, U_1)$ are simplices $W_0 < \dots < W_p$ such that $U_0 \le W_0$ and $W_p \le U_1$; they are ordered by inclusion. Evidently $g/(U_0, U_1)$ is isomorphic to Simpl U_1/U_0 so indeed it is contractible.

<u>Remark</u>: The above proposition, and its proof, are purely combinatorial, in the following sense. Let S be a partially ordered set with a least element, 0, and a greatest element, V. Set $S' = S - \{0,V\}$, and assume $S' = \emptyset$. Then $BS \cong Susp(BS')$. Let

$$\bar{J} = \{ (W_0, W_1) \in S \times S \mid W_0 \leq W_1, \text{ and } 0 < W_0 \text{ or } W_1 < V \}$$

Define g: Simpl(BS) \rightarrow J by g(W₀ <... < W_p) = (W₀, W_p). Then g/(U₀, U₁) = Simpl (B[U₀, U₁]), where [U₀, U₁] = {W \in S | U₀ \leq W \leq U₁}. Moreover B[U₀, U₁] is contractible since

 $[U_0,U_1]$ has a least (and greatest) element. Hence Bg furnishes an Aut(S)-equivariant homotopy equivalence BS \rightarrow BJ.

COROLLARY: Suppose $n \ge 1$. The reduced homology $H_1(J(V))$ $(= H_1(BJ(V), Z)) \text{ vanishes for } i \ne n-1. \text{ The } Z\text{-module}$ $H_{n-1}(J(V)) \text{ is free.}$

DEFINITION: We call $\tilde{H}_{n-1}(J(V))$, with the natural action of GL(V) on it, the <u>Steinberg module</u> of V, and denote it st(V).

In view of the proposition this definition accords with that given in \$1 above.

■3. Proof of the main theorem (theorem 3).

We begin by recalling some basic facts about the homology, $H_1C = H_1(BC, \mathbf{Z})$, of a small category C. A reference for this is [Gabriel-Zisman, Appendix II, §3] (cf. also [Quillen, 1, §1]).

Consider the abelian category C-Ab of abelian group valued functors on C. The functor $\lim_{\to 0} C - Ab \to Ab$ is right exact and has left derived functors $\lim_{\to 0} C - Ab \to Ab$. For the constant functor Z we have

(1)
$$\text{H}_{p}^{C} = \lim_{\rightarrow}^{C} \mathbf{Z}$$

[Gabriel-Zisman, App. II, 3.3].

For example suppose C is a group G, viewed as a category with one object. A functor M: G \rightarrow Ab is just a G-module, and we have $\lim_{\to}^G \mathbf{M} = \mathbf{H}_0(G,M) = \mathbf{M}/(\Sigma_{g \in G}(g-1)M)$. Similarly

$$\lim_{\to p}^{G} M = H_{p}(G,M),$$

the Eilenberg-MacLane homology of G.

Suppose w: C' \rightarrow C is a functor between small categories. If P \in C we have the functor i_p : w/P \rightarrow C' sending (P',u) to P'. Let f: C' \rightarrow Ab be a functor. Then [Gabriel-Zisman, App. II, Thm. 3.6 and Remark 3.8] there is a spectral sequence

$$E_{p,q}^{2} = \lim_{p \to p}^{C} (P \mapsto \lim_{q}^{(w/P)} f \cdot i_{p}) \Longrightarrow \lim_{p \to q}^{C'} f.$$

For the constant functor f = Z this takes the form (using (1)),

(3)
$$E_{p,q}^{2} = \lim_{p \to p}^{C} (P \to H_{q}(w/P)) \Longrightarrow H_{p+q}(C').$$

Now let A be a Dedekind ring with field of fractions F, as in Theorem 3. Our arguments do not require these data to be commutative, so we may, more generally, allow A to be a maximal order (over a Dedekind ring) in a division algebra F. The only feature we require is that if $P \in \underline{P}(A)$ and $V = P \approx_A F$

then P' \mapsto P' \otimes_A F defines a bijection from the set of direct summands of P to the set of all sub F-modules of V. We put rk P = dim V and define Q_n to be the full subcategory of $Q\underline{P}(A)$ whose objects are the P's of rank \leq n. Applying (3) to the inclusion functor w: $Q_{n-1} \to Q_n$ $(n \geq 1)$ we obtain a spectral sequence

(4)
$$E_{p,q}^2 = \lim_{p \to p}^{Q_n} (P \longrightarrow H_q(w/P)) \Longrightarrow H_{p+q}(Q_{n-1}).$$

Its analysis requires first the determination of the groups $H_{_{G}}(w/P)$, for $P\in Q_{_{\mathbf{n}}}$.

Recall that an object of w/P is a morphism $u: P' \mapsto P$ with $P' \in Q_{n-1}$. Up to isomorphism (over P) such an object is determined by an admissible layer (P_0, P_1) of P such that u corresponds to an isomorphism $P' \to P_1/P_0$. Thus we see that w/P is equivalent to the set J of admissible layers (P_0, P_1) of P such that $rk(P_1, P_0) < r$, with the ordering $(P_0, P_1) \le (P_0, P_1)$ if $P_0' \le P_0$ and $P_1 \le P_1'$.

If rk P < n then J has the maximal element (0,P), so w/P is contractible [Quillen, 1, \$1, Cor. 2 to Prop. 2].

Suppose rk P = n. Then the map P' \mapsto P' \otimes_A F \subset V = P \otimes_A F induces an isomorphism from J to J(V) (notation as in §2). Thus, in view of the proposition and corollary of §2, we can now describe the groups H_G (w/P).

For n = 1 we have

(5)
$$H_{\mathbf{q}}(\mathbf{w/P}) = 0 \qquad \text{if } \mathbf{q} > 0$$

$$H_{\mathbf{0}}(\mathbf{w/P}) = \begin{cases} \mathbf{Z} & \text{if } \mathbf{P} = 0 \\ \mathbf{Z} \oplus \mathbf{Z} & \text{if } \mathbf{rk} \ \mathbf{P} = 1. \end{cases}$$

For $n \ge 2$ we have

$$H_{0}(w/P) = \mathbf{Z}$$

$$H_{q}(w/P) = 0 if q \neq 0, n - 1$$

$$H_{n-1}(w/P) = \begin{cases} 0 & \text{if } rk P < n \\ st(V) & \text{if } rk P = n \end{cases}$$

Consider first the case $n \ge 2$. Then

$$\lim_{n \to p} \mathbb{Q}_{n} (P \longrightarrow H_{q}(w/P)) = \begin{cases} H_{p}(Q_{n}) & \text{if } q = 0 \\ 0 & \text{if } q \neq 0, n-1 \end{cases}$$

For the case q=n-1 we introduce the full subcategory Q' of Q_n whose objects are the P's of rank = n. Then $h(P)=H_{n-1}(w/P)$ is, by (6) a functor in Q_n which vanishes on Q_{n-1} , and hence on the source of every arrow whose target lies outside Q'. It follows that the complex in [Gabriel-Zisman, App. II, 3.2]

use to compute $\lim_{\star}^{Q_n}$ h is isomorphic to that used to compute $\lim_{\star}^{Q'}(h|Q')$. Now Q' is equivalent to the groupoid of projective modules of rank n and their isomorphisms. It is equivalent to the full skeletal subcategory with one object P_{α} from each isomorphism class, and the latter category is just the groupoid $Q'' = \iint_{\alpha} GL(P_{\alpha})$. On Q'' the functor $P_{\alpha} \mapsto H_{n-1}(w/P_{\alpha})$ corresponds to the family of $GL(P_{\alpha})$ -modules $st(V_{\alpha})$, where $V_{\alpha} = P_{\alpha} \wedge_{A} F$, by (6). In view of (2) therefore we have

$$\lim_{n \to \infty} \Pr^{Q_n} (P \mapsto H_{n-1}(w/P))$$

$$= \coprod_{\alpha} H_p(GL(P_{\alpha}), st(V_{\alpha}))$$

Denoting this group by L_p we can now display

$$E_{p,q}^2 = \lim_{r \to p}^{Q_n} (P \longmapsto H_q(w/P)).$$

This picture remains in tact until the Eⁿ-term, whose differentials furnish the horizontal sequences in the exact diagram

$$0 \longrightarrow E_{p,0}^{\infty} \longrightarrow H_{p}(Q_{n}) \longrightarrow L_{p-n} \longrightarrow E_{p,n,n-1}^{\infty} \longrightarrow 0$$

$$0 \longleftarrow E_{p+1-n,n-1}^{\infty} \longrightarrow L_{p+1-n} \longleftarrow H_{p+1}(Q_{n}) \longleftarrow E_{p+1,0}^{\infty} \longleftarrow 0$$

from which one extracts the exact sequence of Theorem 3.

Finally, consider the case n = 1. Then in view of

(5) the spectral sequence (4) degenerates to an isomorphism

$$\lim_{t\to p}^{Q_1} (P \longrightarrow H_0(w/P) \cong H_p(Q_0) = \begin{cases} \mathbf{z} & p = 0 \\ 0 & p > 0 \end{cases}$$

If h denotes the functor $P \mapsto H_0(w/P)$ we have a functorial exact sequence

$$(7) \qquad 0 \longrightarrow \widetilde{H}_{0}(w/P) \stackrel{d}{\longrightarrow} H_{0}(w/P) \longrightarrow \mathbf{Z} \longrightarrow 0$$

where d is the antidiagonal map $\mathbf{Z} \to \mathbf{Z} \oplus \mathbf{Z}$ for P of rank 1. Just as in the case n ≥ 2 above we find that

$$\lim_{n \to \infty} {\mathbb{Q}_1} (P \mapsto \widetilde{H}_0(w/P)) = \coprod_{n \to \infty} H_p(GL(P_n), st(V_n))$$

a module we denote by L_p . (Recall that $st(V_q) = \mathbf{Z}$ here since n = 1.) The homology exact sequence of $\lim_{x \to \infty} 1$ for (7) thus takes the form

$$\cdots \to {\rm H}_{\rm p}({\rm Q}_{\rm 0}) \to {\rm H}_{\rm p}({\rm Q}_{\rm 1}) \to {\rm L}_{\rm p-1} \to {\rm H}_{\rm p-1}({\rm Q}_{\rm 0}) \to \cdots,$$

thus proving Theorem 3 for n = 1, and so completing its proof.

Orders in semi-simple algebras.

To apply this theorem to a maximal order A in a semi-

of maximal orders A_j in simple algebras, and K_iA is the direct sum of the K_iA_j 's. Further each A_j is of the form $\operatorname{End}_{B_j}(P_j)$ where B_j is a maximal order in a division algebra and P_j is a faithful projective left B_j -module. Then $P \Rightarrow P \otimes_{B_j} P_j$ is an equivalence of categories $P(B_j) \Rightarrow P(A_j)$, whence isomorphisms $K_iB_j \Rightarrow K_iA_j$. Since Theorem 3 above applies to the B_j 's we can use it to obtain information about K_iA , for example that K_iA is finitely generated when A_j is a maximal order in a semi-simple Q-algebra.

In case A is a not necessarily maximal order we can embed A in a maximal order B. Then $A[\frac{1}{s}] = B[\frac{1}{s}]$ for some central non divisor of zero s (in say the conductor, i.e. the annihilator of B/A). Then the localisation sequence takes the form $... o K_i(M) o K_i A o K_i B[\frac{1}{s}] o ...$ where M is the category of s-torsion finitely generated A-modules of finite homological dimension. Since $B[\frac{1}{s}]$ is a maximal order the groups $K_i B[\frac{1}{s}]$ can be treated by the methods above. Additional techniques seem to be required for the analysis of $K_i M$.

References

- [Bass] H. Bass, Algebraic K-theory, W.A. Benjamin, New York (1968).
- [Borel] A. Borel, Cohomology réele stable des groupes Sarithmetiques classiques, C.R. Acad. Sci. Paris t. 274(24, 1972) A1700-A1702.
- [Borel-Serre] A. Borel and J.-P. Serre, Adjonction de coins aux espaces symmétriques; applications à la cohomologie des groupes arithmétiques, C.R. Acad. Sci. Paris t. 271 (de. 1970) Al156-Al158.
- [Gabriel-Zisman] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, Ergebnisse der Math. Band 35 (1967).
- [Lichtenbaum] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory, These Proceedings.
- [Quillen 1] D. Quillen, Higher Algebraic K-theory I, These Proceedings.
- [Quillen 2] _____, On the cohomology and K-theory of the general linear groups over a finite field, Ann. Math, Vol 96, No. 3 (1972) 552-586.
- [Raghunathan] M.S. Raghunathan, A note on quotients of real algebraic groups by arithmetic subgroups, Invent.

 Math. 4 (1968), 318-335.
- [Solomon] L. Solomon, The Steinberg character of a finite group with BN-pair, Theory of Finite Groups (Symposium edited by R. Brauer and C.-H. Sah), W.A. Benjamin, New York (1969), 213-221.