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K.
1

Daniel guiilen*

81 - Statement of results

The tltle refers to:

THEOREM 1: If A is the rlng of algebralc 1ntegers in a number

field F (flnlte over @) then K A is a flnltely generated

group for all i 2,0.

Remarks: (1) The proof uses'the definitidn of the groups
KA, as Kig(A), given in [Qulllen 1, §2]. Here E(A)jdenotes
the "exact category" of flnltely generated pro:ectlve ‘A-modules.

(2) 1If B is the rlng of S—lntegers relative to. some

finite set & of finite primes of F then we have the locali-

sation seguence [Quillen, i; §5, Cor. to Thm. 5],

‘e 9KiA — X;B — 3_%% Ki-l(A/d”V) - Ki_lA“—%‘...

From [Quillen, 2, Thm. 8] one knows the K-groups of the finite

*Text prepared by H. Bass from Quillen'e lecture at the
Battelle Confercnce September , 1972.

L,
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fields Aé? , Whence one concludes that KiA'+ KiB has finite
kernel (which is zero for i even, > 0) and fihite cokernel
for 1 > 1. In particular KiB is finitely generated, and of
the same rank as. K, A for -i» ;é L.

-{3)~ The ranks of the grOUpS“K.A have been computed in
[Borel‘ Cor..of'Thm; 2]. Conjectures about the arlthmetlc
significance of the torsion subgroups of the K A can be found
in [L;qutenbaum]; |

'(4) The p;cofibﬁ Theoram i’yields the analogous result

for*a]maXimal order in a semi~-simple F-algebra’(cf_ the end

~of 83).

To explain how Theorem 1 iéudeduced we;must introducé
the bulldlng of a vector ‘space V, say of dimension n, over
a fleld (or a lelSlon rlng) F. Itnis theusimplicial complex,
here denoted "', associated to the set of proper subspac-e"a W
of V{0 <«cWx V), (partially) ordered by inclusion. Thus a

p-simplex of [v] is a chain 0 <Wj <...< W, <V of proper

subspaces W, ofv I"f_ n <1 then E ,=.ﬂ7 ifn =2 then_":

- is the projective space B(V) of lines in vy, as a discrete

space.

5 THEOREM 2 (SQlOan—TltS, cf. [Solomon]) SuEEose n > 2.v-;g

:Then v hns the homotoPy type of a Bqu;et of (n-2)_s heres;’m"
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We shall give a proof of this below, gince some of the

detalls are needed for other arguments.ﬁ

it follows that [:] has zexo reduced (1ntegral)homology d

except in dlmen51on nv- 2 where we: obtaln a free z-module
n 2({:]) on Whlch GL(V) naturally acts. ThlS is called

the Stelnberg module of 'V, here denoted st(v) For n=1

we agree to put st(v) Z, with tr1v1al actlon of GL(V)
Now.-.let A be a Dedekind ring with ﬁie}d’of_fractlone
F.V For each n > 0 let Q- denote'the full subcategory of...
Q = QP(A) whose objects are. the progectlve A—modules P of,’
rahk swhiw Thus QQ 1s equlvalent to the tr1v1a1 category,

‘ Qn_c Qn#i* anva = UnrQh. . The main result to be proved below

is_the‘foilowing.

THEOREM 3: Let n > 1. The inclusioh Wi Qn-l > Qﬁ induces a

long exact sequence

Ced > HiQn_l—-} HiQn——) ‘LoJr Hi-n (.GI-‘?(P'-:L) ,st (va)) —>H.l_lQn_1 —> o

where the Pa's represent the isomorphism elasses Of projective

A-modules of rank = n, and where V_=F &, F.
: ' -« o

Remarks: (1) For any (essentially)small category ¢ we put’

HC = H, (BC,Z), where BC is the classifying space
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a Q-algebra R form the group G(R) GL(V 2q R) of F

‘COROLLARY ("Stability"). The homomorphisms H,Q > H,Q
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(= geometric realisation of the nerve) of C 1in the sense

of [Quillen, 1, 81].

(2) The structure theory of projective modules over

Dedekind rings implies that POL'-> det Pa = AnPd defines a

bijection from the set of Pd's to Pic(a).

(3) The proof we give of Theorem 3 applies, more

generally, when A is a maximal order, over a Dedekind domain,

Tciow

in a division algebra F. The corollaries of the theorem

 drawn below likewise apply“in that'generality;

i n+l’

are surijective for n > i and injective for n > 1i + 1.

Proof of Theorem 1 from Theorem 3.

Suppose now that 'F is a finite dimensional division

~algebra over @ and that. A is a maximal orderfin F.

Let P € R(A) and put V = P ®ATF.= P @ @. Then

.I' = GL(P) is an arithmeticisubgroup of G(®), where G. is the

reductlve algebralc group over m ..whose rational points in

2 &

automorphlsms of V Q Let S denote the connected ccmponent

Q . e

'»of the kernel of the norm homomorphlsm G~ G (the noxrm beiﬁgf;—
Vthat»Of)the Q-algebfa:EndF(V)).f;Then’ S is a,eonnectedgltfﬁ?

reductive algebraic group, with no non-trivial characters, -

defined over @, and so it is subject to the result of
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[Borel-Serre]. Since I' N s (@) has finite 1ndex in T (the

elements of T havxng noxrm +1) ‘we can find a normal t:ors:l.on”’”‘i

free subgroup T of r of'finite index inT n*S(Q).
Accordlng to Theoreme 3 of [Borel-Serre] ‘we have for any .

r'-module M and any,vi; a duality*isomorphlsm o

d -g-i

H (F' Ie M) (r',M}= .

‘Here L “"denotes the @-rank of "85 °d  the dlmen51on of: S(R)

modulo-a maximal compact subgroup, ‘and I is the Stelnberg

module of the Tits-building T whose simplices correspond to

the parebolic subéfoups of 8 idefined ouer Q. There is é‘
:uaﬁufgfmisomotphfsﬁf#iu_the'pféséﬁt caSe,'[]““#vT, such that
the simplex WO <..;< Wp of Iﬂ corresponds to its stabilizer
in S, which is a parabollc subgroup deflned over Q. Thls
isomorpbism permitsius to identify I with st(V), and so. _

deduce isomorphisms

(1) H,(r',st (V) % -i- “(r,a).

Now according to [Raghunathan, Cor. 3] the groups
- (r M) are flnltely generated for all 5 whenever M is
finitely generatead cver Z. Actually [Raghunathan] does not
apply‘directly here because S .is not seml-51mple. However
there isban exact sequence 1 -~ ry T 5 r. = 1 where Ty

-

is arithmetic in a semi-simple group and where Ty is finitely
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generated abelian. Then the groups Hq(rs,M) are finitely

.generated by [Raghunathan] so the spectral sequence

P(rt,Hq(rs;M)) = Hp+q(r',M) gives finite generation of the

latter. Taking M = Z we obtain from (1) the finiﬁe
'generation of’ﬁ?e‘groups ﬁi(rf,st(v)). Then the homology
spectral sequence H (r/T', H (r',st(V))) = H (r,st(V))
‘yields, 51nce”r/r is finite, the finite generation of

Hi(r,st(v)), which we now record:

IfP ¢ B(A) and V =P @, F then

() H; (GL(P), st(V)) is a finitely

generated é;oup for all 1i.

The Jordan-Zassenhaus theorem (see, for examole, [Bass,

Ch. X, Thm. (2 4)]) 1mplles that the set {P }, representlng

lsomorphlsm,classes of projective A-quules of rank_n, is

finite. Hence by (2), the groups

L, = Jé_l:a;(cz;(Pa)',st(ya)),

1

WWhere V‘ =P_ = F, areifiniﬁely genérated. For n> 1,

oA

”"Theorem 3 furnlshes a long exact sequence

i-n

———%Lﬁ_l_n —?_‘Hion_l —HQ L —> .-
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Since-HoQ0 = Z and HiQO =0 for i > 0 we conclude by induction

on n that

- H,Q, is finitely-generated for all
(3) o ‘

i and n.

Fixing - i and iétting n > o we ob£ain thé:finité generation
of.Hng(A); “

CeE L NOW @8 g(A) X g(A) -> I;(A) gives to BQP (A) the structure
of a homotopy aséociative and'commutativerH-space. Hence the
fiﬁite.generation of its homology implies that of its hgmotopy,

whence KiA = ﬂi+l(BQg(A),0) is finitely ggheréted,'thps‘

pro&ing Theorem: 1.

82 The Solomon-=Tits theorem.

We fix here a division ring F and a (right)vector

_ space Vv of dimension n < = over F. _Leﬁ (:) denoteathe
simplicial complex associated to the setiof‘gil subspgées of
V,;Qfdered by inclusion. It is contract;ble since,'fpr
example, V hés.a least subspace O‘[Quil;én, 1, éi; Co?. 2

of Prop. 2]. Its p-simplices are chains

(1) - Wy <-oe< ¥
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of subspaces. We distinguish the following subcomplexes of C)

by the indicated restrictions .on their simplices (1):

v : Wy # 0 and Wp;év
@. :WO;_éO
T :WP#V

Y4 :-dim(Wb/WO) <n

It is readily seen that, for n > 2,

E?] = -Cone ‘V\ - = Vi

and ‘

=D

where "=" denotes homotopy equivalence:.

Proof of Theorem 2:

We argue by induction on n » 2. For n = 2 .the discrete ..
. space ls trivially a bouquet of O-spheres, so assume n > 3.

Fix a line L in V and let H denote the set of hyperplanéé

H of V icomplementary to L: V=H@® L. Let Y denote the -

- full subcomplex of [][obtained by deleting the set of vertices

Claim. Y is contractible.

186
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In fact, let g: V > V/L be the canonical prqjgctiqn} It :;

induces a simplicial map g: Y = |V/L| , and the latter cone

is contractible. Hence it suffices, by [Quillen, 1, 81,

«

example following Theoreﬁ‘A], to show that q_l(q)iié:contractibléQ

for each closed simplex ¢ = (Wy/L <...< Wp/L) of . If
' o o K

.U is a vertex of q-l(o) then, for some i, we have qU = Wi/L,%“

i.e. U+ L = Wi' Thus U+ U + L defines a simplicial map from

‘q-l(c)”to“thé‘simplex with vertices W

0 Loie sk Wp’ and the

relations U < U + L show that thié.map“ié‘hOmdtdpi¢'to the
 identity of,q-l(c) [Quillen, 1, 81, Prop. 2]. This proves
~ the claim;v‘ . |

Now we have the following schematic picture of [:]: :

"

_ 1§
— H

S

187
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- set consisting of (O,,'Q_)_'V,and (v,v), ‘wh’e'nce BJ(V) =5".
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Let H ¢ H. Let Link (H) denote the subcomplex of E formed
by simplices ¢ such ‘tha‘t HfE ¢ but ¢ U () is a eimplex. |
Evidently Link(H) < Y Further [\Zl is the union of Y with
the cones over these links, amalgarﬁated along ﬁhe links, as

H varies over I;I Frem the claim above we thus obtain
%
N\ Susp (Link(m).

H €

=]
1

[hd

i

But clee;rly,Link (H) = for H € H. Thus the theorem follows

- by induction, since dim H = n -1

Let J(V) denote the set of proper layers '('W' SW ) of V

(0 < Wo W 2V and dlm(W /W ) < n), ordered by (W W ) <

(W' , W' )if W <« W, and W, < W!. For n=11it is the “unrelated" .
0 1 0= 0 1="1
0 .

PROPOSITION: Suppose n > 2. There is a GL(V)-equivagiant

homotopy eg'gi\'za‘l‘en'ce '

. —9 BJ’(V)

A .
Define a map g from the set- S:mel gf simplices

v, ordered by 1nclusn.on tc J(V), by

gy <ven< W) = (90, )

“188




205

11

Cleérly g is order preserviné, i,é. a.functor:(where
we viewjd?dered‘sets as categories) and it is also GL(V)- !
equivariant. Since ﬂBSimpl( K) is éanonically homeomorphic
to the barycentric subdivision of  K, for any Siﬁpli;iél

‘complex,lKA(cf; fQuiiiéé; l,AEi])H;ﬁé pfoposiéiéﬁuwill foii;ﬁ
if we show that Bq is a homotopy equivalence. -For this it »
sufficesg by [Quillen, 1, 81, Theé:em Ai, to show, for each -
(UO?Ul)ae &(Q),_that ;ﬁé.categorit;2}U0,Ul)_isLéantraétible

(i.e. that its classifying spacg)i§‘so). The objects of

<...< W_ such that U, < W

g/(UO’Ul) are simplices w, b 0 o

and

WP S_Ul;ﬂtheylare ordered by inciﬁsion; Evideﬁtly g/(UO,Ul)

is isomorphic to Simpl so indeed it is contractible.
Remark: The above proposition, and its proof, ére purely
combinatorial, in the following sense. Let S be a partially
ordered set with a least element, 0, and a greatest element,
V. Set,S' ; s - {0,v}, and assume S' = f#. Then -

BS = Susp(BS'). Let.

and Q<Wo or Wl<V]

J"= {(Wo,wl) € S xS | Wo S,Wl’_

Define g; Simpl (BS) = J by g(WO <.;:< Wp) = (Wé;wp). Then

9/(UO,U1) = Simpl (?[QO,Ul]), where [U

029!

(Wwes | Uy s WU Moreover B[U,,U;] is contractible since

l}'
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[U.,U.] has a least (and greatest) element. Hence Bg

“furnishes an Aut(S)-equivariant homotopy equivalence BS - BJ.

'COROLLARY: Suppose n > 1. The reduced homology Ei(J(V))

= Ei(BJ(V),z)) vanishes for i # n - 1. The Z-module

Hﬁ_l(J(V)) is free. .

DEFINITION: We call Hn_l(J(V)),'with the natural action of

GL(V) on it, the Steinberg module of V, and denote it st(V).

In view of the proposition this definition accords with

" that given in 81 above.

'>p3. Proof of the main theorem (theorem 3).

We begin by recalling some basic facts about the homology,

[

"Hié = Hi(Bc;Z), of a small category C. A refererice for this
“is [Gabriel-Zisman, Appendix II, 83] (cf. also [Quillen,

1, 81]).

- Consider the abelian category C-Ab of abelian group

valued functors on C. The functor lim: C-Ab - Ab is right
e T T o . T ‘

" . ‘exact and has left derived functors 1im;: C-Ab' + Ab. For
; a8 L8tk e 5 | -

“the constant functor Z we have

L o i HC =:1im_ Z

_ [Gabriei-zisman, App.‘Ii] 3.3].
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For example suppose C 1is a group G, viewed as a
category with‘onevobject. A functor M: G - Ab is just a
G-module, and we have limG M=H_ (G,M =M( (g=1l)M) . -

R o > N e - Z
Similarly '

. . G
2). - lim_ M = H (G,M
@) L w= R (),

the éilenberg-MacLaﬁe homology of G.

---8uppose w: C' > Cis a functor between small categories.
If‘P é~c we‘havevthe functor iP: w/P - C' sending (P',u) to
P'. ‘Let f: C' > ab be a functor. Then [Gabriel-Zisman,

App. II, Thm. 3.6 and Remark 3.8] there is a spectral sequence

. C . (w/P) T ., C'
E =-1lim_ (P }—> lim foi # lim £.
p,d > P( 5 d P) » ptd

For the constant functor £ = Z this takes the form (using (1)),
‘ . . . c 2 . . ',
3 v E = lim (P H (w/P H c').
(3) _),p(-%q(/))ép,kq()
Now let A be a Dedekind-ring with field of fractions
. F, as in Theorem 3. Our arguments do not reguire these data

t> be commutative, so we may, more generally, allow A -to be

a maximal order (over a Dedekind ring) in a division algebra

F. The only feature we require is that if P ¢ P(A) and V = P %, F
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then P' » P! ®n F-defines a bijection from the set of direct
summands of P to the set of:all sub F—modﬂles of V. We
put rk‘Pbé dim V and define Qn to be the‘full subcateqory of
QE(A) whose objects are the P's of rank < n. Applylng (3)

to the inhclusion Ffunctor w:'Qg:I“+'Qn (n > l) we obtaln a

spectral seguence

o - - o .
— Lgpen n
(@ B o= 1_3mp (® ﬁﬁq (w/P)) éﬂp+q(Qn-l)'

R L

Its analysis requires first the determination of the groups
. g _ Hq(W/P) . ’ for P | € an - )
- Recall that an object of w/P is a morghism us P'w= P

with“P‘ € Q ﬁp to isomorphism (over P) such an object is

n-1"
. determlned by an admlss1ble layer (PO,P ) of P such that u

e corresponds tOvan'lsomorphlsm P! - P»/P . -Thus we see that w/P

is equlvalent to the set J of adm1551ble layers (PO’Pi)

~of 'P such that rk(P 0) < n, with the ordering

]
0.2nd Py 2By

If rk P.<.n then J has the maximal element (0,P),

] T 2 ]
(Po?Pl)S(PO:Pl) J,-f Po = P
so w/P is contractlble [Qulllen, 1, §l Cor. 2 to Prop. 2]

Suppose rk P Then the anap P e P' ®AF cV=">P ®A'F

1nduces an 1somorph1sm from- J -to J(V) (notation as in. §2)

-,Thus, ln view of- the propos1tlon and corollary of 82, ‘we can

1nowN escrlbe the groups H (w/P).
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For n = 1 we have
“Hq(w/P)_= 0 ifq >0
(5) o z ifp =0
) .Ho(w/P) = o
I I91Z if rk P = 1.
. For n > 2 we have
Ho(w/P) = Z
Hq(w/P) =0 ifFqg# 0, n -1
(6) , .
0 if r’kx P'<n
Hn-l(w/P) =
Y st(V) i1frk P =n
Considerdfirst the case n » 2. Then
Q (R . ifq=0
lim "p—H (wp) =) 2D ,
p 7 7 a Qo . ifq#0,n -1

For the case g = n - 1 we introduce the full subcategory Q' of

Qh whose objects are the P's of rank = n. Then h(P)-= Hn_l(w/P)

is, by (6) a-functor in Qg:which vanishes on Qn—l’

and hence
on the source >f every arrow whose target lies outside Q'.

It follows that the complex in [Gabriel-Zisman, App. II, 3.2]

193
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Q
use to compute lg’;m*n h is isomorphic to that used to compute
llmQ (th'). Now Q' is equivalent to the groupoid of projective

modules of rank n and their isomorphisms. It is equivalent to

the full sPeletal subcategory with one dbject P from each
1somorphlsm class, and the latter category is’ just the groupoxd Q" =
liGL(P ) Oon Q" the functor P e H n-1 (w/P ) corresponds to the
family of'GL(Pa)-modules st(Vd)?—wheré Va = Pa QA F, by (6)."

In view of (2) therefore we have

Q

: n
i : lim
PRR EEE > P

® Hn l(W/P))
_LI_H (GL(P oStV )"

5 7 Denoting»this group by”Lp We‘cén now display

= i n - } R
E_P:q »-~l_;_,)mp (¢ H——)Hq(W/P))J
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nel o eFp . T trs T ol

Hy(Q) Hl(Qn) | .. H_(Q )

This pic¢ture remains in tact until the En-term, whose differen-
tiéls furnish the horizbntal'sgquénées in the exact diégram

0 ® &— | &— 'y - &— g° < 0
4__v Ep+l-n,n-l Lp-{-l—n Hp+l(Qn) p+l,0

T -1

0
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from which“ene extracts the exact seQuence of Theorem 3.
Finally, consider the case n = 1. Thenim view of
(5) the speetral sequenee (4),degenerates to an isomorphism
Q. | Z p=20

.1 ~ =
limp (P —> Hy (w/P) = Hp Q) . o oo

- If h denotes the functor P b HO(W/P) we have a functorial

exact sequence

(7) 0 —4> By (w/P) bfy " (w/P)-—_§ z __3 0

where d is the antidiagbnal map T > % ® Z for P  of rank 1.

Just as in the case n > 2 above we find that

Q .

, L1 ~ _ o _
o 1im'P (p i-;ao(w/P)) = Ial Hp(GL(Pa),st_(Vq))_

 a module we denote by LP; (Recall that St(va) = Z here

since n =.1.) The homology exact sequence of lim*1 for (7)

. thus takes the form

e —=> B, Q) =S H @) > Iy = H Q) >

thus proving Theorem 3 - for n = 1, and so completing its proof.’

. Orders 1n sem1-smmp1e algebras.

-~ T apply this theorem to a.max1mal order A in a semi~

'Slmple algebra we flrst note that A is a flnlte product E
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of maximal orders Ay in simple algebras, and KA is the direct

sum of the K, AJ . Further each'Aj is of the form End (P,i

is a falthful progectlve left Bj—module. Then PP P @B Pj

" where Bj is a maxxmal order in a division algebra and PJ S ) N
!

3 |

|
|

is an equlvalence of categorles P(B ) > P(A ), whence
1somorph1sms K.Bj -> K;Aj. Since Theorem 3 above'applles:tSAthe l
_Bj‘s we can use it to obtaln lnformatlon about K A for example ‘ : '%
that K A is flnltely generated when A is a maximal order‘ln \
a sem;-51mple m-algebra.

in case A ie_a not necessarily maximal order we cah_
embed A in a @axi@a} order ‘B.‘tThen A[iﬂ = B[%J forsgme
centrel“hon divisofVEf'eero s (ip eay.the.cohductor, i.e}v
the annihilator of_B/A). Then the localisation seguence

takee'the form .. > K, (M > KA = KiB[§J» .. where #] is the

|
]
1

. category of s-torsion finitely generated A-modules of finite
homolegieal dimension. SincevB[%i is a maximal order the

groups KiB[%i can be,treated by the methods above. Additional

SRRV, S

technigues seem to be required for the analysis of K{W.
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