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Introduction

Algebraic K-theory is the use of homotopy theory to study matrices.

The main reference for the field of higher algebraic K-theory is Quillen’s foun-
dational paper [@] For lower algebraic K-theory, including mainly K, we refer to
[11], and for lower algebraic K-theory, including mainly K1, to [[If]. For background
in algebraic topology we refer to [E]

Many modern K-theory papers can be found in the K-theory preprint archives,
online at http://www.math.uiuc.edu/K-theory/.

These notes are updated frequently during Spring Semester, 2003, as I teach
Math 416, so may occasionally contain inaccuracies and mistakes. The most recent
revision was April 30, 2003.
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CHAPTER 1

Grothendieck groups

1.1. Direct sum Grothendieck groups
We begin by introducing the direct sum version of the Grothendieck group.

DEFINITION 1.1.1. For a small additive category C we define K§C to be the
abelian group given by the following generators and relations. For each object
C € C there is a generator called [C]. For each isomorphism C = C' of objects of C
there is a relation [C] = [C']. Finally, for each direct sum C' & C"' of objects C and
C' in C there is a relation [C @ C'] = [C] + [C"].

Since C @ ¢! = C' @ C, we could have omitted the word “abelian” in the
definition above.

An equivalence F : B — C of small additive categories induces an isomorphism
K®B = K&C. Thus if D is an additive category that is not small, and if it has a
set S C Obj D containing at least one representative from each isomorphism class
of objects, then we may let C be the full subcategory of D with ObjC = S, thereby
obtaining a small additive subcategory of D equivalent to it. We may then define
K$D := K$C. A different choice of S would give a different abelian group K&D,
but it would be canonically isomorphic to the other one, so one choice of S is just
as good as another.

NoraTioN 1.1.2. Let R be a ring (with 1) and let Mg denote the additive
category of finitely generated left R-modules.

The category Mg is not small. Indeed, the class of R-modules isomorphic to 0
isn’t even a set, because there are so many different things we could use for the single
element of an R-module. Fortunately, Mg has a set of objects containing at least
one representative from each isomorphism class, namely, the set of modules which
are quotients of R™ for some n > 0. (Every quotient module of R" is explicitly
constructed as the set of cosets of some submodule in R™, so the collection of
quotient modules of R™ is in one-to-one correspondence with the set of submodules
of R".) Hence K Mp, is defined.

ExaMPLE 1.1.3. Let C be the category of countably generated R-modules.
Then by the same argument as above, K{C is defined, but we can prove that
K§C =0. For,if C € C, thensois D :=C & C®C & ---. But the isomorphism
C ® D = D yields the equation [C] + [D] = [D], and thus [C] = 0. (The same
argument works if we replace countability by any infinite cardinality.)

Suppose F' : ObjC — A is a function assigning to each object C' € C an element
F(C) € A of an abelian group A, and suppose that F' is additive in the sense that
the following identities hold: F(C) = F(C') whenever C =2 C' and F(C & C') =

2



1.2. EXACT SEQUENCE GROTHENDIECK GROUPS 3

F(C) + F(C"). Then there is a unique group homomorphism F, : K{C — A such
that Fy[C] = F(C) for each C € C.

ExaAMPLE 1.1.4. Let k be a field, and let dim : Obj My — Z be the additive

function which associates to a vector space its dimension. Then dim, : K§ My =N
sends the generator [k!] of the cyclic group KSB M to 1, and thus is an isomorphism.

ExaMPLE 1.1.5. Let G be a finite group, and let k be a field of characteristic
not dividing the order of G. Let R = k[G] be the group ring. A module M € Mg
is essentially just a finite dimensional representation of G over k, and by the Wed-
derburn theorem, it is a direct sum of simple modules (irreducible representations).
Let V1,...,V; be a complete set of inequivalent representatives of the isomorphism
classes of simple modules, and define additive functions F; : Obj Mg — Z by set-
ting Fy(M) = e; if M 2 V* @ --- @ V. The resulting maps F}, : K Mg — Z
can be assembled into an isomorphism F, : K Mg = ze.

ExAMPLE 1.1.6. Consider the additive category Mz. Every M € Mz can be
written in the form M = Z" ® Z/pi* ® --- ® Z/p;* in essentially one way. Hence
K§$ My, is a free abelian group with one generator [Z] and one generator [Z /p®] for
each prime power p® with e > 1.

1.2. Exact sequence Grothendieck groups

We introduce now the exact sequence version of the Grothendieck group. First
we abstract the most frequent source for the notion of short exact sequence by
presenting the following definition.

DEFINITION 1.2.1. Let A be a small abelian category, and we let C be a full
additive subcategory of A closed under extension in the sense that whenever 0 —
C'"—- A — C" — 0is an exact sequence of A with C' € C and C" € C, then A € C.
A sequence 0 - C' - C — C" — 0in C is called a short exact sequence of C if it
is exact in A. We call C , equipped with the collection of its short exact sequences,
an eract category.

A more intrinsic characterization of exact categories will be given later.

A functor F' : C — D between exact categories will be called ezact if for every
short exact sequence 0 — C! — C — C" — 0 of C the sequence 0 - FC' = FC —
FC" — 0 is an exact sequence of D.

ExAMPLE 1.2.2. The category Mg, with the usual notion of short exact se-
quence, is an exact category, for it is closed under extension in the abelian category
of all R-modules. It is abelian if and only if R is left noetherian.

DEFINITION 1.2.3. For a small exact category C we define KyC to be the abelian
group given by the following generators and relations. For each object C' € C there
is a generator called [C], and for each short exact sequence 0 - C' - C = C" — 0
in C there is a relation [C] = [C'] + [C"].

As before, for categories such as Mg which are not quite small, we may define

Ko Mpg by choosing a small exact category equivalent to it.

DEFINITION 1.2.4. For an exact functor F' : C — D of small exact categories, we
define KoF : KoC — KD to be the unique homomorphism defined on generators
by F[C] = [F(C].
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LEMMA 1.2.5. If C is a small exact category, if C' = C in C, then [C'] = [C]
m K(]M

ProoF. The exact sequence 0 - ¢! - C' — 0 — 0 shows us that [C]
[C'] + [0]. The exact sequence 0 — 0 — 0 — 0 — 0 shows us that [0] = [0] + [0
and thus 0 = [0]. The result follows.

—

’

|

LEMMA 1.2.6. If C is a small exact category, [C' & C"] = [C'] + [C"] holds in
KoC for any objects C' and C".

PRrROOF. Use the exact sequence 0 - C' - C'® C" - C" — 0. O

Since C'®C" = C"®C', we could have omitted the word “abelian” in definition
and proved instead that the group given by the generators and relations above
is abelian.

LemMmA 1.2.7. If C is a small exact category, there is a natural map KOGBC —
KoC sending each [C] to [C].

PRrROOF. Apply and to show that the defining relations of K§'C hold
in KoC. 0

LEMMA 1.2.8. If C is a small exact category in which every exact sequence of
C splits, then the natural map KgBC — KoC is an isomorphism.

PRrOOF. If the exact sequence 0 = C' — C — C" — 0 splits, then C = C'®C",
and the defining relation [C] = [C’] 4+ [C"] holds already in K§C. a

Let R be a ring (with 1). The following category is an example of a category
in which every short exact sequence splits.

DEFINITION 1.2.9. Let Pg denote the category of finitely generated projective
left R-modules. It is an exact category, because it is closed under extension in the
abelian category of all R-modules.

Now we define the Grothendieck group of a ring R.
DEFINITION 1.2.10. Let Ko(R) = Ko(Pr).

ExaMPLE 1.2.11. For another example of a category in which every short exact
sequence splits, consider a paracompact topological space X and let Px denote the
category of real vector bundles (of finite rank) over X. Using partitions of unity one
can show that any vector bundle E can be equipped with Hermitian inner product
on its fibers that vary continuously from one fiber to another. Given a subbundle
F C E, orthogonal projection with respect to the inner product provides a splitting
map E — F.

Suppose F': ObjC — A is a function assigning to each object C' € C an element
F(C) € Aof an abelian group A, and suppose that F' is additive in the sense that the
following identity always holds: F(C) = F(C") + F(C") for every exact sequence
0—>C"—>C — C" - 0in M. Then there is a unique group homomorphism
F, : KoC — A such that F,[C] = F(C) for each C € C. The group K,C is the
natural way to record all the additive functions.
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ExaMPLE 1.2.12. The group KoMz is an infinite cyclic group generated by
[Z]: the analogues of the generators found in ([L.1.€]) are mostly redundant, for the

short exact sequence 0 — Z £ Z — 7 /p® — 0 shows that [Z] = [Z] + [Z/p?], and
hence that [Z/pf] = 0 in KgMz. Hence KoMz is cyclic, generated by [Z]. The
map rank, : KoMz — Z that measures the rank of an abelian group sends [Z] to
1, so must be an isomorphism.

DEFINITION 1.2.13. Let M3 denote the (abelian) category of finite abelian
groups. (The superscript 1 indicates that the finite abelian grops are those Z-
modules with support of codimension 1 or more.)

EXAMPLE 1.2.14. Let’s compute KoM2%. Any finite abelian group isomorphic
to a direct sum of groups of the form Z/p¢, where p is prime. The exact sequence
0— Z/p*~' = Z/p® — Z/p — 0 shows that [Z/p°] = [Z/p°~ ] + [Z/p] in KoM},
By induction we see that [Z /p¢] = e[Z/p], and thus the set {[Z/p] | p prime} gener-
ates KoMJ. The function F, : Obj M}, — Z that assigns to an abelian group the
number of factors in its composition series isomorphic to Z/p is an additive func-
tion. The homomorphisms F,_ : KoM} — Z assemble to provide an isomorphism

F, : KoM} = [[p Z, where P is the set of primes.

We can rephrase that computation slightly, for a convenient way to compute
the number F,(M) is to take the p-part of the prime factorization of the order #M:
it’s p™»(M)_ Hence the vector F,[M] is completely encoded by the number #M.
Indeed, # : Obj M} — Q* is an additive function. (Here R* is our notation for
the multiplicative group of units in a ring R.) The corresponding homomorphism
#. : KoM} — QX is injective, and the image is the set of positive rational numbers.

It’s tempting to record that calculation as a short exact sequence 0 — KoM} Hey

Q* S8 7% 5 0. But the sequence splits naturally, so we may turn it around and
write it like this.

(1.2.1) 0 2% > Q" S KoML -0

That turns out to be the right way to view it, for it allows us to motivate the
introduction of the higher K-groups as functors derived from Kj in a certain sense.
Thinking of Ky as a functor from the category of small exact categories to the
category of abelian groups, we may ask what sort of functor it is. Evidently, if
F : B — C is an exact functor that is surjective on isomorphism classes of objects,
then KoF is surjective, too. So, by analogy with lines of development that have
proved fruitful in homological algebra, we may ask whether Ky is something like a
right exact functor or an exact functor. Of course, for that, we would need some
sort of notion of “short exact sequence” of exact categories. Fortunately, such a
notion, at least for abelian categories, has been developed.

DEFINITION 1.2.15. Let F' : B — C be an exact functor of abelian categories
such that for any object C' € C there is an object B € B with F'B = (. Assume also
that every arrow of C can be written in the form F(g)~!o F(f) for suitable arrows f
and g in B such that F(g) is an isomorphism. Let ker F' denote the full subcategory
of B whose objects are those objects B € B with FB = 0. Let A — ker F' be an
equivalence of categories. We will call A — B — C a short exact sequence of abelian
categories.
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EXAMPLE 1.2.16. The sequence M% — Mz — Mg is a short exact sequence
of abelian categories.

If we apply K and recall the computations above we get a right exact sequence
KoM}, = KoMz — KqMg — 0 in which the first map is zero and the second
map is an isomorphism. Since KoM} is not zero, the sequence 0 - KoM} —
KoMz — KgMg — 0 is not exact, but splicing it with ([.2-1) we may get a longer
exact sequence that looks like this.

(1.2.2) 0 7% = Q% L KoM}, — KoMz — KoMg — 0

This sequence is highly suggestive, even though it is not very long, because in it
Z* occurs three spaces to the left of Ky Mz, and Q* occurs three spaces to the left
of KoMg. Recall that the long exact sequences of homological algebra involving
derived functors (such as Tor’ (M, N), Ext%(M,N), or H*(X, F)) follow the same
sort of pattern. That suggests that we look for some sort of derived functors K, of
Ko which would fit into a long exact sequence

(123) —)KQC —)Kl.A—)KlB—)ch—)KoA—)K()B%KoC -0

whenever A — B — C is a short exact sequence of abelian categories. This expec-
tation turns out to be fulfilled, and proving it is one of our goals. The wonderful
surprise is that the construction requires homotopy theory, rather than homological
algebral

Let’s pause for a moment to take a closer look at the boundary map in (JL.2.2).
The map 8 : Q¢ — KoM}, should split #., so should be defined so that d(n) =
[Z/nZ] for n € Z — {0}. One simple definition that works for all n/m € Q* is to
set O(n/m) = [Z /nZ] — [Z/mZ)]. Check that it is well defined by using the following
short exact sequences.

0> Z/nZ—Z[tnZ — Z[tZ— 0

0=>Z/mZ—Z[tmZ— Z[tZ— 0

Now compute 9(tn/tm) = [Z/tnZ] — [Z/tmZ] = ([Z[tZ] + [Z/nZ]) — ([Z /tZ] +
[Z/mZ)) = [Z[nZ]— [Z/mZ] = d(n/m). Observe also that the equivalence relation
defining fractions is generated by requiring tn/tm = n/m. If we replace Z by the
coordinate ring R of a nonsingular affine algebraic curve, then KoM}, is the group
of divisors on the curve, 9 is the function that assigns to a nonzero rational function
its divisor, and coker 9 is the divisor class group.

The computation above suggests the following exercises, in which we show how
to define the Grothendieck group as a set of equivalence classes.

By analogy with standard terminology for groups, we introduce the notion of
a set defined by generators and relations.

DEFINITION 1.2.17. Given a set Y and a set R CY x Y the set defined by the
generators Y and the relations R will be the set X of equivalence classes in Y for
the equivalence relation generated by R. We may refer to a relation (y,y’) € R by
writing the equation y = ' instead, anticipating its truth in X.

Since X is a quotient set of Y, the generators didn’t generate any new elements
that weren’t already there, so the relations are the important part of the concept.

EXERCISE 1.2.18. Let S C R be a multiplicative subset of a commutative ring
R, and consider the set L(R,S) defined by the following generators and relations.
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There is a generator for each [r, s] for each r € R and each s € S, and there is a
relation [tr,ts] = [r,s] for all € R and s,t € S. Show that defining [r, s]-[r', s'] :=
[rr', ss'] and [r, s]+[r', '] := [rs' +1's, ss'] gives two well defined binary operations
that make L(R, S) into a ring which is naturally isomorphic to the ring of fractions
S™'R.

EXERCISE 1.2.19. Let M be a commutative additive monoid, and consider the
set L(M, M) defined by the following generators and relations. There is a generator
[m,n] for each m,n € M, and there is a relations [t + m,t + n] = [m,n] for all
m,n,t € M. Show that defining [m,n] + [m',n'] := [m + m',n + n'] gives a well
defined binary operation that makes L(M, M) into an abelian group. Show that
the function M — L(M, M) defined by n — [n,0] is a universal map of monoids
from M to a group.

EXERCISE 1.2.20. Let C be a small additive category, and consider the set
L®(C,C) defined by the following generators and relations. There is a generator
[C, D] for each pair of objects C, D in C, and there is a relation [C,D] = [C &
E, D @ E] for all objects C, D, and E in C. Show that defining [C, D] + [C', D] :=
[C® C',D ® D'] gives a well defined binary operation that makes L®(C,C) into an
abelian group. Produce a natural isomorphism K{'C = L®(C,C).

DEFINITION 1.2.21. Two objects C' and D of an additive category C are called
stably isomorphic if there is an object E € C such that C® E=2 D @ E.

EXERCISE 1.2.22. Let C be a small additive category. Show that two objects
C and D of C are stably isomorphic if and only if [C] = [D] in K$C.

EXERCISE 1.2.23. Let C be a small exact category, and consider the set L(C,C)
defined by the following generators and relations. There is a generator [C, D] for
each pair of objects C, D in C, and there is a relation [C', D'] = [C, D] whenever
there is a pair of short exact sequences 0 - C' - C - E - 0and 0 - D' —
D — E — 0 in C (sharing the same quotient object E). Show that defining
[C,D]+[C",D'] :=[Ca®C',DaD’] gives a well defined binary operation that makes
L(C,C) into an abelian group. Produce a natural isomorphism KoC = L(C,C).



CHAPTER 2

Constructing topological spaces combinatorially

2.1. Making spaces from simplices

Given a space, a good way to compute its homology is to find an explicit cell-
decomposition or triangulation of the space. The reverse is true as well: if one wants
to construct interesting spaces, one way to proceed is to build up the space in stages
by attaching cells (disks) of increasing dimension. First we set out some collection
of O-cells (points), obtaining a discrete space. Then we add some 1-cells (edges,
intervals) by attaching each endpoint to a previously existing 0-cell, obtaining a
graph. Then we add some 2-cells (planar disks, triangles) by specifying loops in
the previously existing graph which will support the boundaries of our 2-cells. We
continue in this way through cells of higher and higher dimension. To finish off the
procedure in case we desire to add cells of arbitrarily high dimension we take the
union of the sequence of previously constructed spaces.

The attachment of 1-cells described above is combinatorial in the sense that
only a finite amount of data is needed to describe the attachment, namely the
pair of 0-cells to which to attach the endpoints. For cells of higher dimension, the
attachments could be any continuous map from the boundary of new cell to the
previously constructed space, but that level of generality is not useful; we prefer
to simplify the situation by using only attachment maps which can be described
combinatorially. For example, we may choose some standard cell decomposition for
the boundary of the k-cell, and require the attachment maps to be suitably linear
on the cells of the boundary.

The choice which seems to work best is to identify the k-cell with the standard
simplex of dimension k, namely the set

k
(2.11) A% = {(a0, -, ar) € [0, [ 3 ai =1},

(The use of such composite notation in a definition is an abuse, for later we will
attach separate meanings to A™ and to |X|.) With this definition, |A°| is a point,
|Al] is a line segment, |A?| is a triangle, |A®| is a tetrahedron, and so on. The
boundary of |AF| is the union of k + 1 simplices (faces) of dimension k — 1 each of
which corresponds to one of the boundary conditions a; = 0 for i =0, ..., k.

The attachment maps will presumably be affine maps from one simplex to
another that send each vertex to a vertex. Let’s clarify that terminology. We
define e; = (0,...,0,1,0,...,0) € |A¥|, where the 1 is in the i-th spot. The vertices
of |A*| are the points {eg,...,e,}. Any point a € |[A¥| can be written in the form
a =Y ae; with 3" a; = 1. An affine map ¢ : |A¥| — |A?] is a function satisfying

¢(>_ aiei) = 3 aid(es).
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We order the vertices by declaring that e; < e; when ¢ < j. By means of this
ordering we regard the standard simplices as oriented or directed.

We envision a sort of package of combinatorial data, called X, say, which
encodes a recipe for construction of a particular space by cell attachment. There will
be a procedure, called geometric realization, for following the recipe and producing
a topological space | X |. It was John Milnor [[L0] who prescribed a successful format
for the package X, namely, that it should be what is known today as a simplicial
set. Governing his choice was the desire that geometric realization be a functor, i.e.,
that it be useful not only for constructing spaces, but also for constructing maps
between spaces and homotopies between maps; this feature turns out to be very
important. By a bit of additional good luck, the notion of simplicial set supports
a broad array of homotopy theory techniques, which in turn allow strong theorems
about the algebraic K-groups to be proved.

2.2. Constructing directed graphs by gluing

Let’s look at the simplest possible example, the problem of specifying a directed
graph. Here is an example of one, where we have given names to the vertices, and
names (not colors) to the edges.

(2.2.1) xT.oy

X

We can think of it as being obtained by gluing a collection of disjoint edges together
by identifying various vertices.

f

X X —Y Y Y
| N
7 %74 W

A topological space realizing the graph () geometrically would look like this.
(2.2.2)

It could be obtained by gluing a collection of disjoint edges together at various
endpoints.

£

——— /—\
(2.2.3) S \ ‘

The space obtained by identification of those vertices can be described as the colimit
of the following diagram of spaces, each of which is a copy of |A°| or |A!|. The
arrows in the diagram are copies of one of the inclusions |A°| =3 |A!| that send the
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single point of |A°| to one of the endpoints of |Al].
Y
[ ]

220 f_/w\
: Q\T/\l\“

¢ —= °

z X

The same combinatorial data will suffice to construct either the abstract directed
graph (R.2.1) or the space (£.2.9) that realizes it geometrically. The combinatorial
data required consists of a set V = {X,Y, Z, W} of vertices, a set E = {f,g,h,e}
of edges, and a pair of functions src, tar : E = V describing the incidence relations.
The function src provides the source vertex for an edge, and tar provides the target
vertex, so that in our example X = srcg = src f = tare.

The alert reader has already noticed that we haven’t defined the term abstract
directed graph; a precise definition might be that an abstract directed graph is
nothing more than a pair of functions £ = V. We are accustomed to attaching
geometric significance to the elements of £ and V by familiarity with illustrations
or geometric realizations of abstract directed graphs, and we will learn to do the
same with the simplices of an abstract simplicial set.

A diagram such as £ = V in the category of sets is most conveniently encoded
as a functor Z — Set from an abstract index category Z = (e =% ). The objects
and arrows of Z may be regarded as names labeling the objects and arrows of the
diagram. A less abstract choice of index category would be the category of spaces
O = (|JA°] = |Al|), where the arrows shown are the endpoint inclusion maps,
because the arrows of O are the arrows in diagram (.2.4). The logical choice for
a functor G from O to Set, at least on objects, would be to set G(|A°|) = V and
G(|AY)) = E.

A% == |A!]
¥e ¥e

v v
V=

Judging by the directions of the horizontal arrows in the diagram above, the functor
G should be a contravariant one, i.e., it should be a functor G : O°® — Set. It
might be startling at first that G should reverse the direction of the arrows, but
that’s the way it has to be, because each edge has a unique source endpoint and a
unique target endpoint, but a vertex might be an endpoint of many edges.

Let’s agree that an abstract directed graph is defined to be a functor G : O°° —
Set. Given two abstract directed graphs G and G', a map 1 : G — G’ should be a
natural transformation. Unraveling the definitions, we see that such a map amounts
to a pair of functions 19 : V — V' and 1; : E — E' between the vertex and edge
sets of G and G', such that src(ni(e)) = no(src(e)) and tar(ny(e)) = no(tar(e)) for
all edges e € E of G.

Recall that the category O currently contains the arrows of Top we wish to use
in colimit constructions of spaces. What about other plausible choices for O7 A
larger choice for O would presumably allow us to construct more interesting spaces.
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For example, we may wish to include in O the reversal map R : |A!| — |Al]
that flips the interval end for end. We would then be able to construct the colimit
of the diagram 1, R : |A!| =3 |Al|, which is homeomorphic to |A!| and thus doesn’t
provide us a new space.

A more interesting alternative would be to enlarge O by including the unique
surjective map |A'| — |A?|, together with the various composite arrows needed
to make O a category. The reader can verify that now a functor F' : O°° — Set
would be a new kind of directed graph where each vertex X is provided with a
distinguished edge 1x starting and ending at that vertex.

(2.2.5) x(Cx L=y Dn
N
w(Cz W) iw

Ca
Ca—5D)

as |A!|, and express the directed graph (P.2.9) as a colimit of a diagram involving
graphs isomorphic to these two, then it would be realized geometrically as (.2.9),
which is a space we’ve seen before, but there are some new maps between such
spaces that can be described combinatorially, such as those that collapse an edge
to a vertex X by wrapping it around 1x.

If we realize

geometrically as |A°| and

2.3. Presheaves and geometric realization

A presheaf on a small category O is a contravariant functor X : O°° — Set.
The presheafs on O form a category we’ll call Pre O, where the arrows are the
natural transformations. In the previous section we discovered that presheaves on
O have something to do with describing spaces that can be obtained as colimits of
diagrams in . In this section we examine presheaves to see how they might be
constructed and used.

Recall that one may define groups, abelian groups, rings, modules, and even
sets ([[2.17) by generators and relations. Let’s consider what it might mean to
define a presheaf by generators and relations. The generators would end up being
“elements” of the presheaf, whatever that means, and the “relations” would be
accidental (or planned) coincidences (or equations) between expressions derivable
from the generators by combining them with the available “operations” on the
elements.

For the purposes of this discussion let’s define an element of X to be a pair
(A, z) where A is an object of O and z € X(A). We may also write simply z € X
and trust the reader to remember that A must be specified as well. The only
available operations on elements of X are those obtained by applying functions
like X(f), where f : B — A is an arrow of (0. For brevity of notation, let’s
define zf = (X(f))(z), so that if g : C' — B is another arrow, we may express the
statement that X is a functor by the identity (xf)g = x(fg), which looks pleasingly
like a statement of associativity. From that identity it follows that applying several
such operations to z is equivalent to applying one. We see that a set G of elements
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could be said to generate X if every element (B,y) has the form y = zf for some
(A,z) € G and some arrow f : B — A. The conceivable relations between two
generators (A, z) and (A’,z') could all be written in the form

(2.3.1) af =a'f'

for some arrows f: B— A and f': B— A’ of O.

Let’s explore how to take a list of generators and relations and produce a
presheaf X. Consider first the case where we have just one generator (A4,z) and
no relations. Here the symbol z is nothing more than our proposed name for
the generator, and conveys no information about the structure of X, whereas A
is a particular object of O. For B € O the elements of X (B) would be formal
expressions of the form zf, for any f : B — A. Since there are no relations, those
elements should all be different, and thus there would be a bijection Hom(B, 4) —
X (B) defined by f — zf.

Let’s discard the irrelevant symbol z and define a new presheaf called A to play
the role of X by setting A(B) = Home (B, A). (Since Hom is contravariant in the
first variable, A is a presheaf.) If we wish to bring the symbol z back into play, we
may write X = zA 5 A

The elements of A are the arrows of @ whose target is A. The single generator
of Ais 15. In category theory we often identify an object with its identity arrow,
so we may also say that A is generated by A.

A presheaf X given by generators and relations, if there are no relations im-
posed, ought to be free, which means that a map n : X — Y (where Y is another
presheaf on ) may be specified by telling where the generators ought to go. The
statement that A is free is the content of the following lemma, because the single
generator 1 is sent by 7 to some element of Y (A).

LEMMA 2.3.1 (Yoneda’s lemma). Let O be a small category, A an object of
O and Y a presheaf on O. There is a natural isomorphism Hom(A,Y) = Y (A)
defined by sending n to n(1a).

PROOF. Given y € Y(A) a map n with y = n(14) must be defined by setting
n(f) =yf for f: B — A. Naturality of 7 amounts to the equation (zf)g = z(fg)
forg: C —» B. O

COROLLARY 2.3.2. The functor h : © — Pre© defined by A — A is a fully
faithful embedding. Morover, if h(A) = h(B), then A = B.

PROOF. For an arrow f : B — A in O, we see that = h(f) : B — A is
the map defined by g — fg. The Yoneda isomorphism Hom(B,A) = A(B) =
Hom(B, A) applied to n yields n(1g) = f1s = f, thus providing an inverse for
h : Hom(B, A) — Hom(B, A).

The second statement is an easy consequence of the first, applied to the four
possible Hom-sets involving the two objects A and B. O

The Yoneda embedding A is so natural that it is tempting to identify A with
A and to write Hom(A,Y) = Y (A). In algebraic geometry this usage is especially
common, where O is a small category of schemes or varieties. Fortunately, eliding
the small dot is painless.

A presheaf isomorphic to A for some A € O is called representable.
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Now let’s address the question of presenting an arbitrary presheaf X by gener-
ators and relations. It is logical to take all the elements of X as the generators and
all the equations as the relations. An equation of the form zf = ' f', as envisioned
in (P-3.1]), is a consequence of the equations zf = y and y = z'f' if y is defined
to be z f, so relations of the form zf = y are the only ones needed. The relation
zf = y is equivalent to commutativity of the following diagram.

(2.3.2) B B
ok
A X=—4A

Commutativity of all such triangles would mean that X receives a map from the
colimit of a certain diagram that has one object for each element of X. We construct
that diagram now.

DEFINITION 2.3.3. Given a presheaf X on a small category O, the category
Elem(X) is the category whose objects are the elements (A4,z) of X, with A € O
and z € X(A). An arrow (B,y) — (A, z) is an arrow f : B — A such that zf = y.

We have practically proved the following lemma.

LEMMA 2.3.4. Given a presheaf X on a small category O, let F : Elem(X) —
PreO be the functor defined by (A,x) — A, and let na,) : A — X be the arrow
defined by x. The resulting map 7 : colim F' — X is an isomorphism.

ProOF. This follows mostly from the discussion above. The map is surjective
because we used every element of X as a generator. The map is injective because
we used all the equations as relations.

Here is a second proof. Letting Y be another presheaf on O we observe that
Hom(X,Y) = lim,, ;_, x Y(A) = lim_ ; ,, Hom(A4,Y) = Hom(colim,, ; , , 4,Y).
These natural isomorphisms show that the covariant functors on Pre O represented
by X and colim,, 4 , A are isomorphic, so by Yoneda’s lemma, so are X and
colim_, ;_, A. O

COROLLARY 2.3.5. Every presheaf on a small category O is an inductive limit
of representable presheaves.

THEOREM 2.3.6. The category Pre O is cocomplete. Suppose G : O — C is a
functor to a cocomplete category C. Then there is a functor R : Pre O — C that
preserves colimits, unique up to natural isomorphism, which makes the diagram

O —h>Pre(9

RN

C

commute up to natural isomorphism.

PROOF. Given an inductive system X; of presheaves, we may construct X =
colim; X; by defining X (A) = colim; X;(A) for each A € O. The universal property
of colimits is used to define X on arrows, and to check that X is the colimit. Hence
Pre O is cocomplete.
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Since R is required to preserve colimits, and every presheaf X on O is an
inductive limit of a diagram that comes from O via h, our only choice is to define R
on objects by X + colim_, ;_, yx G(A), where the colimit is indexed by the category
Elem(X), as above. Functoriality of colimits (see Lemma [A.31]) is used to define
R on arrows; a map X — Y of presheaves induces a functor Elem(X) — Elem(Y")
on indexing categories, and one takes the natural transformation required from
identity maps 1 : G(A) — G(A).

Define a functor S : C — PreO by C' — (A — Hom(G(A),C)). We see that S
is a right adjoint for R from the following chain of natural isomorphisms:

Hom(R(X),C) = Hom(colim G(A4),C)
r:A—X
>~ lim Hom(G(A),C)
z:A—X
= lim (S(C))(4)
z:A—X
~ lim Hom(4,S(C))
z:A—X
= Hom( colim A, S(C))
r:A—X
>~ Hom(X,S(C))
Any left adjoint preserves colimits (see [A-4]), and hence R does. O

We apply theorem in the following examples.

ExaMPLE 2.3.7. Let T be a topological space and let O be the category of open
subsets U of T'. The arrows are the inclusions U < U’ of one subset into a larger
one. The presheaves on O are called presheaves on T, and the theorem extends
the forgetful functor O — Top defined by U — U to a functor Pre O — Top that
forms the étalé space S associated to a presheaf F'. The space S comes with a map
S — T which is a local homeomorphism, and its presheaf of sections is the sheaf
associated to F'.

ExAMPLE 2.3.8. Let Simp be the subcategory of Top whose objects are the
standard simplices |A*| for k& > 0, and whose arrows are the affine maps which
send vertices to vertices and preserve the ordering of the vertices. Let O := Simp.
Theorem extends the inclusion G : Simp < Top to a functor Pre Simp — Top.

Now we replace Simp by an equivalent category which is completely combina-
torial.

EXAMPLE 2.3.9. Define Ord to be the category of finite nonempty ordered sets
of the foorm n := {0 < 1 < --- < n} and let O := Ord. The arrows are the
functions f : m — n that preserve the ordering, ie., i < j = f(i) < f(j).
The functor A : Ord — Simp defined on objects by n — |A"| and on arrows by
e (Z ae; — Y a;e f(l-)) is an equivalence of categories. Theorem extends
that functor to a functor Pre Ord — Top called geometric realization that preserves
colimits. An object X of PreOrd is called a simplicial set, we’ll write | X| for its
geometric realization, and we let SSet := Pre Ord be the category of simplicial sets.
We point out that |n]| = |A™|, so we may introduce the notation A™ := i for the
representable simplicial sets, as an abuse of notation. We’ll write X, := X (n) and
refer to an element of X,, as an n-simplex of X.
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Here is an illustration of 2. It looks like a triangle, and the geometric realization
of the simplicial set A? it represents is a triangle, by definition.

0—1

AN

2

REMARK 2.3.10. We can easily write the underlying set of | X| as a set with
generators and relations, because the forgetful functor Top — Set preserves colimits,
and any colimit of a diagram of sets can be written in terms of generators and
relations. The generators are pairs [z, a] where z is an n-simplex of X and a € |A"|.
(The element z is the index for an object |A™| in the diagram whose colimit is | X,
and the corresponding map |A"| — |X| sends a € |A"| to [z,a] € |X|.) The
relations are those of the form [z,a] = [y,b] where y is an m-simplex of X and
a€|A™|, f:m—n,y==zf,and a = fb:= (A(f))(d). The equations amount to
the commutativity of the following diagram.

PN p—

AR

X T

(2.3.3)

The relation can be written in the form [z, fb] = [zf,b], which is reminiscent of
the defining relation in the tensor product of two modules. For more information
about that analogy, see the section on “coends” in [E, IX.6].

Simplicial sets will be our main objects of study in this book. As we have seen,
any space obtained by gluing simplices using arrows from Simp can also be obtained
as the geometric realization of a simplicial set. For example, if 7' = colim F’ where
F : 7T — Simp is a functor from a small index category Z, then we can define
X := colim(h o A= o F) € SSet to obtain a simplicial set with |X| = T.

For example, the circle, as a topological space, can be obtained as the coequal-
izer of the pair of maps |A°| = |A!| that send the point of |A°| to the endpoints
of |A'|. The coequalizer S' of the analogous diagram A% = A! is a simplicial set
whose geometric realization |S|" is homeomorphic to a circle. The n-simplices of
S are the maps n — 1 with the two constant maps identified; thus #S. =n + 1.

The sphere of dimension k& can be constructed as a geometric realization in a
similar way, by collapsing the boundary of A”; the n-simplices would be the maps
n — k with the nonsurjective maps identified. Alternatively, one could collapse
the boundary of (A!)*; the n-simplices would be the maps n — 1¥ with those not
surjective on each coordinate identified.

DEFINITION 2.3.11. Suppose X and Y are simplicial sets. The product X x Y
is the simplicial set defined by n — X (n) x Y (n). It serves as the product in the
category SSet.

DEFINITION 2.3.12. Suppose S is a set and X is a simplicial set. The product
S x X is the simplicial set defined by n— S x X (n).

DEFINITION 2.3.13. Suppose S is a set. The constant simplicial set correspond-
ing to S is S x A%, An isomorphic simplicial set can be defined by n — S.
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REMARK 2.3.14. Any small category equivalent to Ord would serve just as well
as Ord in the definition of simplicial set. For example, in the direction of realism, we
could use Simp. Or in the direction of versatility we could pick a big set U to serve
as our undverse, and let Ord be the category of finite ordered nonempty sets whose
underlying sets are subsets of U. Such a choice might make more natural certain
operations on ordered sets, such as taking the image of a map, or concatenation of
two ordered sets into one.

EXAMPLE 2.3.15. Let O := Ord*, and consider the functor G : Ord® — Top
defined by (my,...,m;) — |A™]| x --- x |A™|. An object X of Pre(Ord") is
called a k-fold multisimplicial set, and we let SSety := Pre (Ordk ) be the category
of simplicial sets. (A 2-fold multisimplicial set is called a bisimplicial set.) Theorem
extends G to a functor Pre (Ord¥) — Top (also) called geometric realization
that preserves colimits. We’ll write |X| for the geometric realization of X; it is
a space obtained by gluing k-fold products of simplices. Let A™1-™k denote
the presheaf on Ord® represented by (my,...,m;), so that |A™L Mk | = |A™1| x
< x |JA™E|C We'll write Xy, o, = X (my,...,my;) and refer to an element of
Xmi,...,ms as an (mq, ..., my)-simplex of X.

2.4. Geometric realization of partially ordered sets

Suppose T is a partially ordered set. We introduce a simplicial set NT, called
the nerve of T, defined by n — Hompgget(n,T). An n-simplex of NT is a chain
to < --- <t, €T of length n. The functor N : Poset — SSet is a fully faithful
embedding, so we may often omit the N. The geometric realization of a partially
ordered set is defined by |T'| := |NT|. Evidently, if T' is another partially ordered
set, N(T xT') = NT x NT".

Another plausible choice of coordinates on |AF| is obtained by considering the
partial sums s; = Eg;& a;, yielding the following alternative representation of the
standard simplex.

(241) |Ak| = Dk = {(50,.. .,8k+1) € [0, 1]k+2 | 0= S0 S 81 S T S Sk+1 = 1}
We can get the back to the original coordinates with the formula a; = s;11 — s;.

REMARK 2.4.1. There is another way to present the elements of Dy, which
makes the maps between the simplices easy to understand. From an element s € Dy,
construct a function ¢ : [0,1] — k, defined except at a finite number of points,
by letting t(z) = i if s; < £ < s;41. Filling in the remaining values in some
arbitrary but order-preserving way, we agree to regard two functions [0,1] = k
as equivalent if they differ at only a finite number of points in [0,1]. Let’s use
the notation [0,1]* — k to depict such an equivalence class of order preserving
functions [0,1] — k. Thus we have a bijection Dy 22 ||k||, where ||k|| is the set of
maps [0, 1]* — k. Evidently, composition is well defined and makes k — ||k|| into a
functor Ord — Top.

We may illustrate a map ¢ : [0,1]* — k by drawing a rectangle of length 1 to
represent the unit interval [0, 1] and by labelling each subinterval ¢ ' (i) with 4, as
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in the following figure, where s = (0, .26, .37, .44, .55, .74, .82, .86, 1).

© ~ < o T N ©
o N m < o ~ 0 © -
= S o o S oo
0 1 12| 3 4 5 16| 7

REMARK 2.4.2. We can make the use of the symbol [0,1]* in Remark
totally legitimate by constructing a new category Poset® to hold it and the “ar-
rows” we used. An object will be a pair consisting of a partially ordered set T' and
a family of essential subsets of T'. The complement of an essential subset will be
called negligible. We require a finite intersection of essential subsets to be essential,
and any subset containing an essential set to be essential. Consideration of the
empty intersection shows that T is essential. Two functions T = U will be called
essentially equal if they agree on the elements of some essential subset of T'. Es-
sential equality is is an equivalence relation. An arrow 7' — U in the new category
will be an essential equality class of order preserving maps p : T' — U such that
the preimage p~1(G) of any essential subset G C U is essential. It is easy to check
that composition is well defined. We embed Poset into Poset* by declaring T' to
be the only essential subset of T'; when necessary, we identity 7' with its image in
Poset*. For a partially ordered set T' we define an object T* € Poset™ to be T with
the finite subsets as the negligible subsets.

EXERCISE 2.4.3. Check that the isomorphism |A¥| 2 ||k|| is a natural isomor-
phism of functors Ord = Top.

REMARK 2.4.4. If T is a partially ordered set, then by combining Remark
and Remark , we see that the set underlying |T'| may be defined by generators
[z,a] where z : n — T and a : [0,1]* = n, and by relations [z, fb] = [zf,b], as
illustrated in the following diagram.

(2.4.2) m <"[0,1]*

/A

T<z—ﬂ

Now let ||T']| be the set of equivalence classes of order-preserving functions [0,1] — T'
with finite image, where two functions are declared to be equivalent if they differ at
only a finite number of points of [0, l]ﬂ As before, let’s depict such an equivalence
class as a map [0,1]* — T. The map 7 : |T| — ||T|| defined by [z,a] — za is
well-defined, because 5[z, fb] = zfb = n[z f,b].

Define the image of a map [0,1]* — T to be the intersection of the images of
the functions in the equivalence class. Alternatively, the image consists of those
elements of T' whose preimage under any function in the equivalence class is infinite.
We say that a map [0,1]* — T is surjective if its image is T'.

The map 7 is surjective because the image of any map [0, 1]* — T is isomorphic
to n for some n.

L1f we wanted to give ||T|| a topology, we would use the weak topology for the union ||T|| =
Uy U], where U runs over the finite chains U C T', giving each ||U]| the topology of the standard
simplex.
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DEFINITION 2.4.5. We say that a simplex x € T), is nondegenerate if the func-
tion x : n — T is injective.

DEFINITION 2.4.6. We say that a point a € |A"| is an interior point if all of its
coordinates a; are nonzero. That is equivalent to requiring that the corresponding
map [0,1]* — n is surjective.

DEFINITION 2.4.7. We say that a generator [z, a] is in normal formifz :n — T
is nondegenerate and a is an interior point of |A™|.

If [z, a] is in normal form, then z and a are determined by [z, a], so injectivity
of 1 can be established by showing that every generator can be reduced to one in
normal form using the relations. Let’s proceed to do that, starting with a generator
[x,a]. First, if a is not an interior point, we may select an injective map f:m —n
whose image is {i € n | a; > 0} and a point b € |A™| with fb = a; the point b
is obtained from a by removing the coordinates that are zero. Using one of the
relations we see that [z,a] = [z, fb] = [zf,b] = [y,b]. Now consider y : m — T.
If y is not injective, it factors through its image as y = zg, where g : m — pis a
surjection and z : p — T is injective. Letting ¢ = gb we use another relation to see
that [y, b] = [29,b] = [z, gb] = [2,¢]. The point ¢ is an interior point because b was
an interior point and g is surjective, so [z, ¢] is in normal form. This is illustrated
in the following commutative diagram, which clarifies how the image p of za relates
to z and a. B

(2.4.3) P <—<10,1]*
b

/17
|

ar

T T n
We have shown that 7 : |T| =N [|T|| is a bijection.

An alternative approach to this result would have been to show that the index
category Elem(NT) in the definition of |T'| can be replaced by the subcategory of
nondegenerate simplices of 7. One essentially replaces a simplex n — T by its
image, which is a functorial operation. Another way to phrase that is that we
could replace Ord by its subcategory of injective arrows. Thus |T| is a colimit of a
diagram of standard simplices involving only injective maps.

LEMMA 2.4.8. Suppose T and U are partially ordered sets. Then the natural
map [T x U| = |T| x |U| is a bijection.

PRrOOF. It is enough to show that the natural map ||T x U|| —= ||T|| x ||U| is
a bijection, in other words, that the natural map

Hom([0,1]*,T x U) — Hom([0,1]*,T) x Hom([0,1]*,U)

is a bijection. But this follows from the universal property of products in the
category of partially ordered sets, together with the observation that two maps
[0,1] = T x U differ at only a finite number of points if and only if the projections
[0,1] =2 T and [0,1] = U both do. O
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Similar proofs of can be found in [[] and in [B].
The bijection of the lemma is not always a homeomorphism. We'll treat that
issue in detail in section P-3.

EXERCISE 2.4.9. Let Int be the category of finite ordered endpointed sets of the
form (n) := {-00<1<2<---<n < oo} forn >0. The arrows are the functions
that preserve the ordering, send —oo to —00, and send oo to co. For example, there
are exactly two arrows (1) — (0), one that sends 1 to oo and one that sends 1 to
—00. Produce an isomorphism of categories Int°® = Ord. Invent some simplicial
sets by finding some interesting functors Int — Set.

2.5. Geometric realization of products

Our goal in this section is to investigate compatibility of geometric realization
of simplicial sets with products. Since every simplicial set is a colimit of a diagram
consisting of representable simplicial sets, we investigate them first. We begin by
introducing some general facts about the compatibility of products with colimits of
topological spaces.

LEMMA 2.5.1. [E, 3.5.8] A continuous bijection from a compact space to a Haus-
dorff space is a homeomorphism.

COROLLARY 2.5.2. The natural map |A™ x A™| — |A™]| x |A™| is a homeo-
morphism.

ProoOF. By Lemma the map is a bijection. The partially ordered set mxn
is finite, so A™ x A™ has only a finite number number of nondegenerate simplices,
and thus [A™ x A™| is a finite union of compact subsets, hence is compact. Now

apply Lemma . |

LEMMA 2.5.3. , 3.6.1] If B is a compact Hausdorff space, then it is locally
compact.

LEMMA 2.5.4. , 4.3.2] If X and Y are topological spaces, f : X =Y is an
identification map, and B is a locally compact space, the f x 1 : X x B —Y x B
is an identification map.

COROLLARY 2.5.5. If B is a locally compact space, then the functor X — X xB
preserves colimits.

PROOF. It preserves coproducts, and by Lemma, it preserves coequalizers.
Since colimits can be expressed in terms of coequalizers and coproducts, it preserves
them, too. O

LEMMA 2.5.6. If X is a simplicial set, and m > 0, then the natural map
| X x A™| - | X| x |[A™] is a homeomorphism.

PRrROOF. As in Lemma we write X = colimg.a»_sx A™ and use compati-
bility of products with colimits of sets and presheaves together with Lemmas
and for the space B = |A™| = |A™|, which is a compact Hausdorff space. We
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also use Corollary P.5.2.

| X x A™| = |(colim A™) x A™|
|colim(A™ x A™)|
colim |A™ x A™|
colim(|A™| x |A™])
(colim |A™|) x |A™|
| X[ < |A™

R 1R lllz R 1R

O

DEFINITION 2.5.7. A simplicial homotopy between two maps f,g: X = Y of
simplicial sets is a map h : X x A’ = Y such that the following diagram commutes.

io 1 ’il
X —>XxAl<—X
Y

Here iy and i; are derived from the two maps A% — A'. The two maps are called
simplicially homotopic, or just homotopic.

COROLLARY 2.5.8. The geometric realizations of homotopic maps between sim-
plicial sets are homotopic.

PRrROOF. Apply lemma to the geometric realization of the diagram in the
definition above, and we get the following diagram, hence the result.

|X| 2 X x [Al <2 | X

Y]
O

LEMMA 2.5.9. Suppose X andY are simplicial sets, and |Y| is locally compact.
Then the natural map | X x Y| — | X| x [Y| is a homeomorphism.

Proor. We use Lemma and argue as in its proof.
|(colim A™) x Y|
|colim(A™ x V)]
colim |A" x Y|
colim(|A™| x |Y)
(colim |A™]) x |Y]
(X[ x Y]

| X x Y|

R 1R ~L”Z 1R IR
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2.6. Geometric realization of categories

Suppose T is a partially ordered set. We can regard it as a category whose
objects are the elements of T and whose arrows ¢ — j are the pairs (i, j) such that
i < j. Thus Homr(4,5) has one element if ¢ < j, and otherwise has no elements.
This conversion procedure yields a fully faithful functor Poset — Cat, which is
compatible with products. Applying this procedure to n yields a category some of
whose arrows are 0 > 1 —-2 — --- > n.

Now suppose C is a small category. Interpreting ordered sets as categories as
above, we introduce a simplicial set NC, called the nerve of C, defined by n —
Homgat (n, C). Thus an n-simplex of NC is a chain of arrows Cy — C; — -+ = Cl,.
The functor N : Cat — SSet is a fully faithful embedding, so we may often omit
the N. It also preserves products. The geometric realization (or classifying space)
of a small category is defined by BC := |C| := |NC]|.

EXERCISE 2.6.1. Let I C A™ be the union of the edges joining vertices whose
numbers differ by 1. Show that a simplicial set X is isomorphic to the nerve of a
category C if and only if for every n the restriction map Hom(L", X) - Hom(A", X)
is an isomorphism.

PROPOSITION 2.6.2. The geometric realization of a natural transformation n :
F — G between two functors F,G : C = D provides a homotopy |F| ~ |G|.

PRrOOF. Interpreting the ordered set 1 as the category 0 — 1 allows us to
regard n as a functor C x 1 — D which makes the following diagram commute.

Applying geometric realization and using the homeomorphisms |C x 1] = |C| x |1] &
[C] x |Al] = |C| x [0,1] (see Lemma P.5.6) we get the following diagram, which
provides the desired homotopy.

IC|

O

PROPOSITION 2.6.3. If FF: C — D and G : D — C are adjoint functors between
a pair of small categories, then their geometric realizations |F| : |C| — |D| and
|G| : |D| = |C| are inverse homotopy equivalences.
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PRrROOF. Apply Proposition to the unit and the counit of the adjunction,
defined in Remark [A.43. a

COROLLARY 2.6.4. If C is a category with an initial object or a final object,
then |C| is contractible.

PRrOOF. Say C is an initial object of C. Let D be a category with one object
* and one arrow, let G : D — C be the functor which sends * to the initial object,
and let F' : C — D be the constant map. Observe that G is a left adjoint for F,

and apply Proposition P.6.3. O

2.7. Geometric realization of products, continued

To go further, we need two things: a way to tell when the geometric realization
of a simplicial set is locally compact; and the category of compactly generated
Hausdorff spaces, to deal with the case where neither factor of the product is locally
compact.

First we show that the geometric realization of a simplicial set is always Haus-
dorff. For this we need a normal form for points of |X| analogous to the one
developed for points of geometric realizations of partially ordered sets in Definition

N

DEFINITION 2.7.1. Let X be a simplicial set. A simplex z € X, is a degeneracy
of an element y € X, if there is a surjective map f : m — n such that x = yf. The
map X, — X,, induced by a surjective map f is called a degeneracy map. The
simplex z € X, is called degenerate if it is a degeneracy of an element y € X,, with
n < m. Otherwise, it is called nondegenerate. The simplex z € X, is called totally
degenerate if it is a degeneracy of an element y € Xj.

DEFINITION 2.7.2. Let X be a simplicial set. A simplex z € X, is a face of an
element y € X, if there is a injective map f : m — n such that x = yf. The map
X, — X, induced by an injective map f is called a face map.

WARNING 2.7.3. It may happen that a simplex z € X,, can be nondegenerate
but the representing map z : A™ — X is not injective.

EXERCISE 2.7.4. Let X be a simplicial set. Show that a simplex z € X,, can
be written as a degeneracy x = yf of a unique nondegenerate simplex y € X,,, for
some m < n, using a unique surjective map f.

The fact stated in the exercise above is easy if X is the nerve of a partially
ordered set, and we’ve already used it. It’s also easy if X is the nerve of a category:
a chain of arrows Cy — C1 — --- — C), is degenerate if it has any identity arrows,
so just eliminate them by passing to the quotient of n that identifies the source and
target of each identity arrow.

DEFINITION 2.7.5. Let X be a simplicial set. For each n > 0, let sk,, X be the
subsimplicial set of X generated by the k-simplices of X for k < n.

Evidently, X — sk, X is a functor SSet — SSet.

The simplicial set sk, ; A™ sends the object p to the set of nonsurjective order
preserving functions p — n. The image of each such function is contained in a
proper ordered subset T of n, and perhaps in several. According to lemma, ,
we can write sk,_1 A" = colimrc, NT, where T' runs over the proper subsets
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of n ordered by inclusion, because the intersection of two such subsets is again
such a subset. By compatibility of geometric realization with inductive limits, we
see that |sk,—1 A" = colimrcy |T'|, and according to lemma [A33, we see that
the map colimrc, |T| = Urpc, [T is a bijection, and thus by Lemma P51, is
a homeomorphism (we give the union the subspace topology). The union is the
boundary 0|A"| of |A"|. so we have proved that |sk,_; A™| =2 J|A™|. This justifies
introducing the notation JA™ := sk, _1 A™.

LEMMA 2.7.6. If X is a simplicial set, then the natural map colim, |sk, X| —
| X| is a homeomorphism.

PrOOF. The map colim, sk, X — X is an isomorphism, because the colimit
is just the union in this case. Since geometric realization commutes with colimits,
the result follows. O

PROPOSITION 2.7.7. Let X be a simplicial set, and suppose n > 0. Let X?
be the set of nondegenerate n-simplices x € X,,. Define a map X' x A" — X
by (z,f) — xf and consider also the induced map X% x OA™ — sk, _; X. The
following square is a pushout square.

Xnd x QA" ——sk, 1 X

| |

Xnd x A" ——— sk, X

PRrROOF. Let P denote the pushout and consider the map P — sk, X; we'll
show it’s a bijection. Surjectivity is clear, because every simplex x € sk, X is a
degeneracy of a simplex y € X,,, with m < n, and we may even assume that y is
nondegenerate. Now let’s prove injectivity. Suppose (z, f) € (X7 x sk, A"),,. If f
is not surjective, then factoring it through its image shows that f € sk, 1 A", so we
may replace such an element by its image y = zf € sk,_1 X without changing the
element of P it represents. Thus, considering representatives of a pair of elements
in P with the same image in sk, X, there are three cases to consider: (a) two
elements y, z of sk,_1; (b) an element (z, f) € X¢ x sk,, with f surjective and an
element y of sk,_1; and (c) two elements (z, f) and (', f') of X" x sk, X with f
and f' surjective. In case (a) we see that y = z because sk,_1 X is a subsimplicial
set of sk, X. In case (b) zf is a degeneracy of the nondegenerate simplex z, and
thus 2 f & sk,_1 X, because, according to Exercise , there is no other way to
write zf as a degeneracy of a nondegenerate simplex; hence y # zf, contrary to
assumption. Finally, in case (c), from zf = z'f' and Exercise we conclude
that (z, f) = (', f'). O

PROPOSITION 2.7.8. If X is a simplicial set, then |X| is a CW-complez.

PRrROOF. Applying geometric realization to the pushout square in Proposition
, thinking of the set X% as a discrete topological space, and using the com-
mutativity of geometric realization with colimits, we see that the following diagram
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of topological spaces is a pushout square.

Xnd x §|A"| —— [skp—1 X|

| I

Xnd x |A"| —— [sky X|

Hence |sk,—1 X]| is a closed subset of |sk, X|, and sk, X| is obtained from it by
gluing cells to it along their boundaries. We see now that the colimit in Lemma
P.7.4 is the union of an increasing family of closed subspaces, and thus that | X| is
a CW-complex. O

PROPOSITION 2.7.9. IfY < X is an injective map of simplicial sets, then |X|

can be obtained from |Y| by attaching cells. In particular, |Y| is a closed subspace
of | X|.

PROOF. We argue as in P.7.9, but we replace sk,, X with the subsimplicial set
of X generated by Y |Jsk, X. O

Let X be a simplicial set. Recall the notation [z, a] € |X| introduced in Remark
.2.3.1”, which describes the set |X| by generators and relations. If z € X,,, then
z,a] is the image of the point a € |A™| under the map |z| : |A"| = | X]|.

DEFINITION 2.7.10. Let int |A™| denote the interior of |A™|. It consists of the
points all of whose coordinates are nonzero.

DEFINITION 2.7.11. We say that a generator [z,a] is in normal form if x € X,
is nondegenerate and a € int |A"™|, for some n.

COROLLARY 2.7.12. Any point of |X| can be written in normal form in just
one way. This sets up a bijection |X| = ], X% x int |A™|.

PROOF. This follows from the pushout square in the proof of P.7.9, together
with Lemma . d

COROLLARY 2.7.13. If X is a simplicial set, then |X| is Hausdorff, normal,
and paracompact.

PRrROOF. First we check that each point of | X]| is closed. Writing it in normal
form [z,a], we see that it is a closed point of |sk, X|, which in turn is a closed
subset of | X|, as we saw above, so the point is closed in sk, X]|.

Now start with a closed subset W of | X| and a continuous function ¢ : W — R.
We may extend it to a continuous function on all of | X | by using the Tietze extension
theorem [[, 3.6.2] and induction on n to extend it to W U |sk, X|. At each stage,
we use only the normality of the space |A™|.

To check that | X | is Hausdorff, take two points v and w of | X|, consider the map
{v,w} — [0,1] defined by v — 0 and w — 1, use normality to extend it to a con-
tinuous map |X| — [0, 1], and take preimages under that of disjoint neighborhoods
of 0 and 1 in [0, 1].

We omit the proof that | X| is paracompact. a

COROLLARY 2.7.14. If X is a simplicial set, then |X| is compactly generated.
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ProOF. The space |X| is a colimit of a diagram of the compact spaces |A™|, by
definition. Any colimit Y = colim Y; of compact spaces Y; is compactly generated,
for if W C Y is a subset meeting each compact subset C of Y in a closed subset
of C, then it meets the image of each map Y; — Y in a closed subset, and thus its
preimage in Y; is closed, too. Since Y has the final topology with respect to the
system of maps Y; — Y, the set W is closed. |

COROLLARY 2.7.15. If X is a simplicial set, then |X| is a compactly generated
Hausdorff space.

DEFINITION 2.7.16. Let CGHaus be the category of compactly generated Haus-
dorff spaces.

A topological space Y which is not Hausdorff can be made Hausdorff in a
universal way as follows. Let y ~ y' be the smallest equivalence relation on Y
whose graph is a closed subset of Y x Y. It can be defined as the intersection of all
equivalence relations whose graph is closed. Let Y’ := Y/~ be the quotient space
by that equivalence relation. The map ¥ — Y’ is a universal map from Y to a
Hausdorff space.

A Hausdorff space Y can be made compactly generated in a universal way
as follows. Consider the partially ordered set of compact subsets C' C Y, which
is closed under intersection, and let kY := colimgcy C. Since kY is a colimit
of a diagram of compact spaces, it is compactly generated. By lemma the
map kY — Y is a bijection, because the intersection of two compact subsets of a
Hausdorff space is compact.

PROPOSITION 2.7.17. Limits and colimits exist in the category CGHaus, and
for each B € CGHaus the functor X — X X B commutes with colimits.

PROOF. A limit of Hausdorff spaces is Hausdorff, and a colimit of Hausdorff
spaces can be made Hausdorff using the procedure sketched above. A colimit of
compactly generated spaces is compactly generated, and a limit of compactly gen-
erated Hausdorff spaces can be made compactly generated using the procedure
sketched above. Thus limits and colimits in Top can be made into limits and col-
imits in CGHaus. For details we refer to , VII.8, Proposition 2]. According to
, VII.8, Theorem 3] the category CGHaus is Cartesian closed, and thus the func-
tor X — X x B has a right adjoint Y — Y, hence, by Lemma , preserves
colimits. O

COROLLARY 2.7.18. Suppose X and Y are simplicial sets. Then the natural
map | X xY| = |X| x |Y| is a homeomorphism if the product is formed in the
category CGHaus.

We remark that, by lemma P.5.9, if either | X | or |Y| is locally compact, then the
product | X| x |Y, formed in Top, is a geometric realization, hence is in CGHaus,
and serves as the product formed in CGHaus. In fact, using Corollary one
can show that the product of a locally compact Hausdorff space with a compactly
generated Hausdorff space is a compactly generated Hausdorff space.

PrROOF. We argue as in Lemma , but we form products in the category
CGHaus. The colimits can be regarded as colimits either in Top or in CGHaus, be-
cause in Top, the spaces that result are known to be compactly generated Hausdorff
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spaces, by Corollary P.7.13. The same remark applies to the product |A”| x |Y].
| X x Y| |(colim A™) x Y|

|colim(A™ x V)|

colim |A" x Y|

colim(]A"™| x [Y])

(colim |A™]) x |Y]

[ X > [Y]

R 1R ~L”Z 1R IR

|

LEMMA 2.7.19. Geometric realization preserves equalizers of maps of simplicial
sets.

PRroOF. First we remark that equalizers of maps between compactly generated
Hausdorff spaces are compactly generated Hausdorff spaces, so it doesn’t matter
whether we work in Top or in CGHaus.

Suppose r,s : Y = Z are maps of simplicial sets, andlet X = {y € Y | ry = sy}
be their equalizer, so the sequence X — Y =3 Z is exact. Then we will show
|X| = |Y| 3 |Z]| is an equalizer of topological spaces.

We have shown in that the map |X| — |Y] is a closed embedding, so it
is enough to check that its image contains every point of [y,b] € |Y| whose two
images in | Z| are the same. For this purpose we may assume that [y, b] is in normal
form, with y € Y;, nondegenerate, and b € |A™| interior. Our assumption is that
rly,b] = [ry,b] and s[y, b] = [sy,b] are equal, so let’s put those in normal form by
writing ry = zf, where z is nondegenerate and f in Ord is surjective, and sy = wg,
where w is nondegenerate and g is surjective. Now [ry,b] = [zf,b] = [2z, fb] and
[sy,b] = [wg,b] = [w,gb]. The points fb and gb are interior because f and g are
surjective. Thus [z, fb] and [w, gb] are equal and in normal form, so z = w and
fb = gb. Since b is interior (i.e., surjective as a map from [0,1]*), we see that
f=g9. Thusry =zf =wg = sy, and y € X, so [y, b] € | X]|. O

PROPOSITION 2.7.20. Geometric realization, regarded as a functor SSet —
CGHaus, preserves finite limits of simplicial sets.

PRrOOF. Every finite limit can be expressed as an equalizer of two maps between
two finite products of objects in the diagram, so this follows immediately from

and . O

The proposition above will be especially useful when applied to pullbacks.
Let’s give a couple of examples to show that one cannot hope that geometric
realization will preserve infinite products.

EXAMPLE 2.7.21. Let S be a finite set. The map |[](S x A%)| = [Ty (S x A%)]
is a bijection but is not a homeomorphism because the source is infinite and discrete,
but the target is a product of finite spaces, and thus is compact.

EXAMPLE 2.7.22. The map |[[yAY| = [Iy|A?] is not surjective, because all
of the points in its image have just a finite number of different values among its
components. The map is not even surjective on fundamental groups: the image is
the set of bounded vectors in [[y Z.
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2.8. Covering spaces

Let X be a topological space. A covering space of X is a space Y with a map
p:Y — X such that X can be covered by open sets U C X which trivialize p in the
sense that the preimage p~1(U) is a disjoint union (coproduct) p~*(U) =[], Va
and p induces homeomorphisms V,, — U for each a. A map g: Y — Y of covering
spaces is one that fits into the following commutative diagram.

Y| I oy

RN

X

We let Covy denote the category of covering spaces of X. If X has a base point
zo € X, then the functor F : Covy — Set defined by p — p~!(zo) will be called
the fiber functor for Covx.

By a standard compactness argument that uses the simple connectedness of
|A™|, a map |A"| — X lifts uniquely to Y, once the destination of one point is
specified, as illustrated in the following diagram.

A% —Y

7
ar

P
s l

|A" — X

In the case n = 1 we call this path lifting.

Let Gx be the fundamental groupoid of X. It’s a category whose objects are
the points of X and where an arrow f : x — 2’ is a homotopy class [y] of paths
starting at x and ending at z’, i.e., ¥(0) =  and ¥(1) = 2’. The fundamental group
at a point z is m (X, ) := Homg(z,z). There is a functor p~! : Gx — Set defined
on objects by z — p~!(z) and on arrows by path lifting. Conversely, if X is locally
simply connected, then any such functor comes from a covering space that can be
constructed by gluing together spaces over X of the form p~1(z) x U — U, where
U is a simply connected open subset of X and = € U. Thus we have an equivalence
Covx — Set?. Taking the forgetful functor W : Set® — Set as the fiber functor
for Set®, we remark that the equivalence makes the following diagram commute.

Covy — Set®

N

Set

The group G can be recovered from the fiber functor W : Set® — Set, regarded
as an object in the category of such functors, as follows. If S is a G-set, then G
acts on W(S), regarded as an object of Set. (It doesn’t act on S regarded as an
object of Set”, because for g € G, the function S — S defined by s — gs is just a
function, not a map of G-sets.) The action of G on W(S) is natural in S, and thus
there is a map G — Aut W. (Discuss whether Aut W is a set. ...) Regarding G
as a left G-set using left multiplication, we see that the functor W is represented
by G in the sense that there is a natural bijection W (S) = Hom(G, S), defined by
s+ (g — gs), with inverse defined by ¢ — ¢(1). By Yoneda’s lemma, we see that
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Aut W = Autgye (G)°P = (GP)°P = @G, and this isomorphism is equal to the map
G — Aut W. (Give the details of this computation. ...)

In particular, the fundamental group of X can be recovered from the category
of covering spaces and its fiber functor.

It also follows that if G and H are two groups, and 1) : Set® — Set? is an
equivalence of categories that makes the following diagram commute up to natural
isomorphism, then 1 provides an isomorphism G = H.

Set® — Setf

N

Set

Assume now that X is path connected and locally simply connected, pick a
basepoint 2y € X, and let G = m(X, o). Giving a functor p~1 : G — Set is
then equivalent to giving the left G-set p~1(zg). Choosing p~!(zy) = G gives the
universal covering space X — X of X. Since G is also a right G-set by right
multiplication, G acts on X on the right. If S is a left G-set, the corresponding
covering space can be obtained as X x¢ S.

Now suppose X is a simplicial set and p' : Y’ — |X| is a covering space. We
define a simplicial set Y by declaring that an n-simplex of YV is a pair (z,y), where
z € X, and y: |A"| = Y’ is a map that makes the following triangle commute.

YI

b

p
jAn[— ||

We make Y into a functor by defining (z,y)f := (zf,yf), for an arrow m — n, as
in the following diagram.

YI
yf
y 7
e
m f nl =
|A™] AN 1 X

zf

Let p : Y — X be the map defined by p(z,y) = z. The natural map |Y| — Y’
is a homeomorphism that makes the following triangle commute, showing that any
covering space of a geometric realization is a geometric realization.

M = oy

RN

Ry
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The map p : Y — X has the following lifting property: a partial lifting of a simplex
of X to Y extends uniquely to a complete lifting, as in the following diagram.

A" ——Y

7
| 2k
Ve
A" —— X
Evidently, it is enough to check the lifting property when m = 0. Amapp:Y —
X with the lifting property will be called a simplicial covering space. Let Covx
denote the category of simplicial covering spaces of X. The geometric realization
of a simplicial covering space is a covering space, and we have an equivalence of
categories Covx — Cov|x|, and hence, when there is a base point, the fundamental
group of | X| can be recovered combinatorial from Covy and its fiber functor.
Let’s recast the notion of simplicial covering space. Given a simplicial covering
space p : Y — X and a simplex z of X, we define a set T'(x) by setting T'(z) :=
p~1(z). Thus y € T(z) if the following diagram commutes.

e
p
A"LX

We make T into a functor T : Elem(X)°? — Set by using y — yf to define the
function T'(z) — T(zf) for an arrow f : ©f — z of Elem(X), as in the following

diagram.
Y
/
y
)
i)

A ——= A" ——> X

zf
The lifting property says that T sends every arrow to a bijection, i.e., T' is morphism
inverting.
yf Y

zf

Starting from the functor T, we can recover Y by defining Y, = [[,cx, T'(2),
and if T' is morphism inverting, then Y — X is a covering space.

We have shown that there is an equivalence of categories

Covx = Map(Elem(X)°P, Iso Set)

defined by sending Y to 7' as constructed above.

There is an equivalence of categories
(2.8.1) Map(X, Iso Set) EN Map(Elem(X)°P, Iso Set),

which takes a bit of care to describe, so we embark on that now. There is a map
Elem(X)°P — X which sends a simplex z to its first vertex zy. Composition with

it defines the map (P.8.1)).
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To go the other way, suppose we have a map T : Elem(X)°P — Iso Set. From it
we define U : X — IsoSet as follows. For z € Xy we let U(z) := T(z). For z 5 y
in X7, we consider the diagram z — e + y in Elem(X)°P. Applying T to it yields

U(z) = T(z) < T(e) > T(y) = U(y),

from which we define the isomorphism U (e) : U(x) =N U(y) by composition of one
map with the inverse of the other. (That isomorphism is what we would expect to
get by lifting the path corresponding to e to our covering space.)

Now we show that U sends a 2-simplex s of X to a 2-simplex of Iso Set. First
we label the faces of s.

Now we draw the corresponding diagram in Elem(X).

/I

x e
g f

Y




2.8. COVERING SPACES 31

Applying T yields the following diagram of isomorphisms, yielding the desired com-
mutativity.

Uu(f)

That U sends an n-simplex of X to an n-simplex of Iso Set for n > 2 follows from the
statement for n = 2 just proved. In effect, for any category C, a map ska A™ — C
extends uniquely to a map A™ — C.

We have shown that there is an equivalence of categories

Covx — Map (X, Iso Set)

Now define the fundamental groupoid Gx of X to be the groupoid generated by
X. More precisely, its objects are the elements of X, its arrows are generated by
X1, and the relations are those coming from the triangles in X, (give more details
here ...). We have an isomorphism Map(Gx, IsoSet) = Map(X,Iso Set), induced
by the natural map X — G. If z € Xj, then we have shown that m (| X/, zo) =
Autgx (z.O) :

It is also fairly clear that the evident map Gx — G| x| is an equivalence.ﬂ

Now suppose M is a monoid, regarded as a category with one object *, and
let M+ be the group completion of M. It is the group defined by generators and
relations, with generators the elements of M, and with relations the multiplication
table of M. We see that m1|M| = M. The classifying space of M is BM = |M]|.
If G is a group, then G = 7 BG.

DEFINITION 2.8.1. If G is a monoid acting on a set S, let (G, S) be the category
whose objects are the elements of S, where Hom(s,s') = {g € G | gs = s}, and
where composition of arrows is multiplication in G. We call it the translation
category for G acting on S.

2More details needed here. Perhaps rewrite the section using representations of G| x| instead
of representationsn of the fundamental group.
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Let G be a group. Observe that mg|(G,S)| is the quotient set G\S = {Gs |
s € S}. If S = # is the one point set, then (G, S) = G and [(G, S)| = BG. The
map [{G, S)| = BG induced by the map S — x is the covering space of BG whose
fiber is S. Replacing S with G, regarded as a G-set by left multiplication, we define
EG = |{G,G)|; as basepoint we choose 1. The map EG — BG is the universal
covering space of BG. The group G acts on the right side of G also, hence also on
E@G, and EG/G = BG.

LEMMA 2.8.2. The space EG is contractible, and 7, BG = 0 for n # 1.

PRroOF. In the category (G,G) any object is an initial object, hence EG =
|{G, G)| is contractible. Let a : |S™| — BG represent a homotopy class. Writing
|S™| = |A™|/0|A™| we compose with the quotient map to get a map S|A™| — BG.
Pick any boundary point of |A™| as the basepoint and lift the basepoint to the
basepoint of EG. Now extend the lifting to get a map f : |A™| — EG. Since it’s
a lifting, it sends 0|A™|, which is connected, to the fiber of EG — BG, which is
discrete; thus it sends all of 9|A™| to the basepoint, and thereby factors to yield a
map & : |S"| — EG, which is a lifting of a. The map & may be contracted to the
basepoint, because EG is contractible, hence so may a. |



CHAPTER 3

Topological Techniques

3.1. Subdivision

In this section we present edgewise subdivision, which was presented in [@]
and is due to Quillen.

DEFINITION 3.1.1. If T and U are partially ordered sets, define their join T« U
to be the disjoint union 7' U U with a certain ordering. For ¢ € T let ¢’ denote the
corresponding element of T U U, and for u € U let u” denote the corresponding
element of T'LI U. The ordering is defined as follows.

t <ty <= t1 <ty
uf <uf = ug <u
t < always
u' <t never
EXAMPLE 3.12. mxn={0'<1 <---<m' < 0" <1"<...n"}

The join m*n is totally ordered and is uniquely isomorphic to m + n + 1. This
will allow us to regard m * n as an object of Ord when necessary. Alternatively,
we could replace Ord by a larger but equivalent small category of finite nonempty
totally ordered sets, closed under join, as mentioned in .

EXERCISE 3.1.3. Observe that |m % n| is homeomorphic to the join |m| * |n]
of two simplices. Show that for simplicial sets X and Y, the join |X| * |Y] is
homeomorphic to the geometric realization of the simplicial set X * Y defined by

n = 11, X(f71(0)) xY(f~'(1)), provided we define X (¢) and Y (¢) to be sets
with one element.

DEFINITION 3.1.4. Define a functor e : Poset — Poset by e(T") := T°P x T.

Since e(n) is totally ordered, we may also regard it as an object of Ord, and
thus we may regard e as a functor from Ord to Ord. Thus if X is a simplicial set,
the composite functor X o e is again a simplicial set.

DEFINITION 3.1.5. If 7 is a category, let SubZ denote the category whose
objects are the arrows k<j of Z, and whose arrows from k'<—j' to k<j are the
commutative diagrams

K~

|

k<=—-J
of Z. Composition of arrows of Sub 7 is accomplished by composing the underlying
arrows of Z. If T' is a partially ordered set (regarded as a category), so is Sub 7. It
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can be regarded as the partially ordered set of subintervals of T, i.e., the partially
ordered set of pairs (j,k) of elements of T' with j < k, where (j', k') < (j, k) is
defined to mean j < j' and k' < k.

Here is an illustration of Sub(2). Notice that its geometric realization is a
triangle, subdivided into four smaller triangles.

(0,0) (0,1) (1,1)

(2,2)

LEMMA 3.1.6. The functors e and Sub are adjoint functors on the category of

o

partially ordered sets, i.e., there is a natural isomorphism Hompgger (e(T),U) —
Hompgset (T, SubU).

PRrOOF. Define it by f — (¢t = (f(t'), f(#""))). The following illustration shows
the situation when to < #1, and hence ¢ >t} and ¢; < ¢{. Each vertical arrow is
an element of Sub U.

fto) =— f(#)

L

ftg) — f(#)
]

COROLLARY 3.1.7. If T is a partially ordered set, then there is a natural iso-
morphism (NT)oe = N(SubT) of simplicial sets.

PrROOF. We compute ((NT)oe)(n) = NT(e(n)) = Hom(e(n),T) = Hom(n,SubT) =
(N (SubT))(n). 0

The corollary prompts the following definition.
DEFINITION 3.1.8. If X is a simplicial set, define Sub X := X oe.

Using this definition the corollary can be rephrased as saying that Sub(NT) =
N(SubT), so there is no danger of confusion if we identify T with NT and SubT
with N(SubT).

In order to handle geometric realizations, it is convenient to extend the notions
above to the category Poset™ introduced in remark , as follows. Suppose T
and U are objects of Poset*. Make T * U into an object of Poset® by declaring
its essential subsets to be those containing a set of the form F' LI G where F is an
essential subset of 7' and G is an essential subset of U. Make T°P into an object of
Poset™ by using the same essential subsets. Define e(T") := T°P « T'. Make Sub(T)
into an object of Poset* by declaring its essential subsets to be those containing a
subset of the form Sub(F'), where F is an essential subset of T'.

Recall that if T is a partially ordered set, then T* denotes T' with its finite
subsets declared to be negligible. We point out that T* x U* = (T « U)*, and thus
e(T*) = e(T)*.
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The following exercise is a generalization of lemma .

EXERCISE 3.1.9. Show that e and Sub are adjoint functors on the category
Poset™, i.e., there is a natural isomorphism Homposet* (€(T), U) — Hompgset* (T, Sub U).

COROLLARY 3.1.10. There is a natural homeomorphism |Sub AP| 22 |AP|.

PRrROOF. We use the exercise above, but just the easy part, where U has no
nonempty negligible subsets. Let I := [0,1]*, and recall from remark that
|U| =2 Hom(I,U). Let e(I) 25 T be the piecewise linear isomorphism defined by
'+ (1—7r)/2 and 7" — (r +1)/2. Using that and corollary p.1.7, we compute
|Sub AP| = |APoe| = |(Np)oe| = [N Sub(p)| = [Sub(p)| = Hom(I,Sub(p)) =
Hom(e(I),p) = Hom(I,p) = |AP|. Naturality in AP amounts to naturality in p by
Yoneda’s lemma, and is easy to check because composition with an arrow p — g is
compatible with each of the steps. (Say something about continuity ...) O

EXERCISE 3.1.11. Show that the homeomorphism in corollary is piece-
wise affine. ...

THEOREM 3.1.12. Let X be a simplicial set. There is a natural homeomorphism
[Sub X| = | X]|.

PROOF. As in Lemma we write X = colimy.a»_x AP. Using corollary
we compute [SubX| = |X oe| = |(colim, AP)oe| = |colim, (AP oe)| =
colim, |AP o e] = colim, |AP| = | X|. O

Now we introduce a variant of edgewise subdivision called k-fold edgewise sub-
division. It was used in [ﬂ] for studying the action of exterior powers on K-theory.

DEFINITION 3.1.13. For k > 1 define a functor e : Ord — Ord by setting
er(n) := nx*---*n, the join of k copies of n. For a simplicial set X define Suby X :=
X oeyg.

THEOREM 3.1.14. There is a natural homeomorphism |Suby X| =2 | X|.

PROOF. The proof is similar to the proof of theorem , with one important
difference: when T is a partially ordered set, Suby NT is not the nerve of a partially
ordered set. An n-simplex of Suby NT is a chain tg; < t17 < ...tph1 <tz < t19 <
coitpy <o <tgr <t < ...tpk- We can make do by pointing out that Suby NT
is a subsimplicial set of NT*, and by defining a map [0,1]* — Suby NT to be a
map [0,1]* — T* whose image is an n-simplex for some n. O

3.2. Techniques for bisimplicial sets

THEOREM 3.2.1. Let X.. — Y.. be a map of bisimplicial sets. Suppose the map
is a homotopy equivalence in each row, i.e., for each n € N the map | X.,| = |[Yan|
is a homotopy equivalence.

ProoF. ... 0

THEOREM 3.2.2. Let X.. » Y.. = Z.. be a sequence of pointed bisimplicial sets
so that the composite map X — Z is constant. Suppose the sequence is a fibration
sequence in each row, i.e., for each n € N, the sequence |X.,| = Y| = |Z.,]
is a fibration sequence. Suppose also that each space |Z.,| is connected. Then the
sequence | X| — |Y| = |Z] is a fibration sequence.

PRrROOF. ... 0
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3.3. Techniques for simplicial sets

Let f : X — Y be a map of topological spaces. Review the definition of (Serre)
(weak) fibration. Give the construction of the long exact sequence of homotopy
groups. Show that any map is equivalent to a fibration. Define the homotopy fiber
®f of the map f. Show there is a long exact sequence of homotopy groups and
sets:

e X oY 51, 10f 5w X = -2 mY 5 me®f = weX = mY

and that, in addition, mY acts on mo®@f in such a way that the set m Y \mq®f of
orbits maps injectively to mpX. ...

Define and discuss homotopy cartesian square, including those where the lower
left corner contains a contractible space. ...

Define fibration sequence F' — E — B, both those where the composite map
F — B is a constant, and those where a null-homotopy of it is provided. ...

Now let f : X — Y be a map of simplicial sets and consider its geometric
realization |f| : |X| — |Y|. We ask for a way to obtain the homotopy fiber ®|f| as
the geometric realization of a simplicial set. There is a way to do this in general, but
the answers it gives are too complicated for our purposes. The following definition
records the most naive simplicial set that has some similarity to the homotopy fiber.

DEFINITION 3.3.1. Let f : X — Y be a map of simplicial sets. For each m > 0
and for each y € Y,, we define the simplicial set y/f as follows.

(y/f)(n) := lim Y (m *n) —2> Y (n)

Here i : m — m*n and j : n < m * n are the natural inclusions.

Alternatively, (y/f)n = {(7,2) € Y(m*n) x X(n) | vi =y and vj = f(x)}, as
illustrated in the following diagram.

[&

“<<\—:><1

.
*<—1I3

\_/
Yy
DEFINITION 3.3.2. Let Y be a simplicial set. For each m > 0 and for each
y € Yy, define y/Y :=y/1y.

EXERCISE 3.3.3. Let Y be a simplicial set. For each m > 0 and for each y € Y,
show that the space |y/Y| is contractible.

THEOREM 3.3.4 (Theorem B’). Let f : X — Y be a map of simplicial sets, and
suppose for every m > 0, for every y € Y,,, and for every map g : m' — m, that
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the map |y/f| — |lyg/f| is a homotopy equivalence. Then for any y the following
square is homotopy cartesian.

ly/fl — X

L

/Y| —=[Y]
As a consequence, for any verter xo € Xo, the following sequence of homotopy
groups and sets is exact.
- = (X[, 20) = mn (Y], f(20)) = Tn-1(lyo/fl, €0) = mn—1(|X],20) = ...
Here eq is the vertez (yo — f(x0),T0) of yo/f-

EXERCISE 3.3.5. Let C be a small category. Recall the definition of the category
Sub C from B.1.9. Let tar : SubC — C be the functor which sends an object C' — C'
of SubC to C. Show that |tar| : |[SubC| — |C| is a homotopy equivalence.
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CHAPTER 4

Definitions of K-theory

4.1. Direct sum K-theory

Suppose C is a small additive category. The direct sum Grothendieck group
K&C (see [[.1.1]) is the group completion of the monoid M whose elements are the
isomorphism classes of C and whose binary operation comes from direct sum. A
more detailed study of the structure of C would involve the isomorphisms more
directly. Thus it is natural to to build an analogue of the classifying space BM
based on the “monoid” of objects of M under direct sum. It would be the geometric
realization | X| of a simplicial set X with one vertex 0 (to be used as the basepoint
in |X|), one edge for each object of C, and one triangle for each isomorphism
C=C'"®C" in C. The three edges of the triangle would be labelled with the three
objects, as in the following diagram.

0—~0

x lC”
0
By the results of the previous section there would be an isomorphism K$C — m | X|.
A natural way to extend this construction to incorporate higher dimensional
simplices involves mimicking the construction of BM. Recall that an n-simplex in

the nerve of M is a functor f : n — M. The statement that f is a functor means
that for ¢ < j < k we have the following equation.

(4.1.1) f(k«i) = f(k<j) o f(j+i)
For 7+ < j in n we see that

fUe) = fUei =)o f(j—1j = 2)o... f(i+ 1),
so f is determined uniquely by the elements f(j<j —1) for 1 < j <n.

What if we replace f by something called F' that assigns to an arrow j<i of n an
object F(j+i) of C, and we try to replace ({.1.1]) with the following isomorphism?

(4.1.2) F (ki) = F(k+j) ® F(j+1)

Such an isomorphism could be specified by specifying its two components.
F(k+i) <+ F(k<j)
F(ki) <+ F(j+i)

Notice that the intervals [j, k] and [¢, j] are subintervals of [i, k], so a unified way to
obtain both components would be to provide an arrow

Fl+i) « F(k<j)

38
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whenever ¢ < j < k < £. Since such arrows are to be used as inclusion maps in
direct sum diagrams, when h < i < j < k < /£ < m we would want the following
diagram to commute.

F(m+h) <—— F(l+i)

N

F(k+j)

The discussion above leads immediately to the following precise definitions.
Assume C is an additive category with a chosen zero object 0, and recall the

definition of SubZ in p.1.3.

DEFINITION 4.1.1. A functor F : SubZ — C is called additive if F(i+i) =0

for all 4, and for all ¢ < j < k the map F(k«i) +— (F(k«j) ® F(j«i)) is an
isomorphism.

DEFINITION 4.1.2. We define a simplicial set S.®C by letting it send n € Ord
to the set of additive functors C' : Subn — C. It sends an arrow g : m — n
in Ord to composition with the functor Subg : Subm — Subn. In other words,
(Cg)(j«i) := C(g(4)<g()). It is easy to check that if C is additive, then so is Cg.

The definition above is due to Waldhausen, [@, p. 182], where it is introduced
as a simplicial exact category, and in [E, 1.3], in the more general context of cat-
egories with cofibrations. The corresponding simplicial set (of objects), considered
here, is introduced as s.C in [[L6], 1.4].

DEFINITION 4.1.3. For an additive category C define the direct sum K-theory
space K®(C) := Q]S.9C|.

The following definition doesn’t conflict with our previous definition of
K$c.

DEFINITION 4.1.4. For n > 0 define the n-th direct sum K-group K2C :=
1o K®(C). Observe that KPC = 7,11]5.9C|.

We saw in exercise that KJC can also be defined by generators and
relations. There is a generator [C, D] for each pair of objects C, D in C, and there
is a relation [C, D] = [C @ E, D @ E] for all objects C, D, and E in C. Any set given
by generators and relations can be represented as the set of connected components
of a graph: put down one vertex for each generator and one edge for each relation.
By using the category C we can build a simplicial set more interesting than that
graph whose set of connected components is KSBC .

DEFINITION 4.1.5. Given an ordered set n, define a functor ' : Ord — Poset
by letting I'(n) denote the partially ordered set {L, R} Un obtained by adding two
new incomparable minimal elements L and R to n, each of which is less than all
the other elements.
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Here is an illustration of I'(n) as a category.

L

/

R

DEFINITION 4.1.6. We define a simplicial set G.®C by letting it send n to the
set of additive functors SubI'(n) — C.

By construction, we see that mo|G.9C| = K (C). Later we will see that |G.9C]|
is homotopy equivalent to the loop space of |S.®C|, so that m,|G.®C| = K2 (C) for
all n > 0.

The following definition is due to Quillen.

DEFINITION 4.1.7. We define a category S™1S(C) whose objects are pairs
(C, D) of objects of C, and whose arrows from (C, D) to (C',D') are isomorphism
classes of triples (X,a,3), where X € C, a: X ®C = C',and B: X & D > D'.
Composition of arrows is done by ...

4.2. Exact sequence K-theory

Now let’s switch gears and consider a small exact category C. We would like
to generalize the discussion above and construct a new simplicial set ¥ whose
fundamental group is K¢C. As before, Y could have one vertex 0 (to serve as the
basepoint), one edge for each object of C, and one triangle for each short exact
sequence 0 - C' - C — C" — 0 in C. The three edges of the triangle would be
labelled with the three objects, as in the following diagram.

oy
X lc"

0

0

By the results of the previous section there would be an isomorphism KoC — m|Y].
To extend this construction to incorporate higher dimensional simplices we may
proceed as before and try to invent something called F' that assigns to an arrow
j«i of n an object F(j<i) of C, but this time we replace ([.1.9) with the following
short exact sequences, one for each i < j < k.

(4.2.1) 0= F(j«i) > F(k+i) > F(k+<j) =0

In order to obtain the arrows in the exact sequence above we may make F' a functor
on the following category.

DEFINITION 4.2.1. If 7 is a category, let ArrZ denote the category whose
objects are the arrows k<j of Z, and whose arrows from k'«j’ to k<j are the
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commutative diagrams

K~

|

k<=—-J
of Z. Composition of arrows of ArrZ is accomplished by composing the underlying
arrows of Z. If 7 is a partially ordered set (regarded as a category), so is ArrZ; it
is the partially ordered set of pairs (j,%) of elements of Z with j < k, where this
time (j', k') < (j, k) is defined to mean j' < j and k' < k.

DEFINITION 4.2.2. A functor F' : ArrZ — C is called ezact if F(i<—i) = 0 for
all i, and for all ¢ < j < k the sequence 0 — F(j«1i) — F(k<i) = F(k<j) — 0 is
a short exact sequence of C.

WARNING 4.2.3. The category ArrZ is not an exact category.

DEFINITION 4.2.4. We define a simplicial set S.C by letting it send n to the
set of exact functors C' : Arrn — C. It sends an arrow g : m — n in Ord to
composition with the functor Arrg: Arrm — Arrn. In other words, (Cg)(ji) :=
C(g(4)«g(@)). It is easy to check that if C is exact, then so is Cg.

DEFINITION 4.2.5. For an exact category C define the K-theory space K (C) :=
Qls.cl.

The following definition doesn’t conflict with our previous definition of
KoC.

DEFINITION 4.2.6. For n > 0 define the n-th K-group K,C := m,41|S.C|.

DEFINITION 4.2.7. If R is a ring, define K,,R := K,Pgr (see for the
definition of Pg).

DEFINITION 4.2.8. If F : C — D is an exact functor between small exact
categories, then (by composition) it gives a map S.C — S.D. Let F, : K,C — K, D
denote the induced map on K-groups.

EXERCISE 4.2.9. If F' and G are naturally isomorphic exact functors C = D
between small exact categories, show the induced maps S.C = S.D are homotopic.

It follows from the exercise that if F' : C — D is an exact equivalence, then the
induced map S.C = §.D is a homotopy equivalence, and hence the induced map
K,C = K, D is an isomorphism.

Here is Quillen’s original construction of algebraic K-theory.

DEFINITION 4.2.10. For a small exact category C we define a new category QC
whose objects are the objects of C. The arrows of QC from C to D are the iso-
morphisms of C' with an admissible subquotient object of D. Arrows are composed
by expressing a subquotient object of a subquotient object of D as a subquotient
object of D. ...

It is possible to motivate the definition of QC by using exercise and asking
how close Sub S.C is to being isomorphic to the nerve of a category. ...

We may also introduce a simplicial set analogous to G.®C that uses exact
sequences instead of just direct sums.
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DEFINITION 4.2.11. We define a simplicial set G.C by letting it send n to the
set of exact functors ArrI'(n) — C.

By construction, we see that mo|G.C| = K(C). Later we will see that |G.C| is
homotopy equivalent to the loop space of |S.C|, so that 7,|G.C| = K,(C) for all
n > 0.

EXERCISE 4.2.12. Let Lg denote the groupoid of finitely generated projective
R-modules of rank 1. Show that the determinant functor Pr — Lg (define it
somewhere else ...) can be used to construct a map G.Pr — Lg. Use it to
construct a homomorphism 7 G.Pr — R*.

4.3. H-spaces

DEFINITION 4.3.1. An H-space is a topological space X with a base point zg
and a binary operation g : X x X — X such that the maps z — p(xo,z) and
x + pu(x,x0) are homotopic to the identity.

LEMMA 4.3.2. Let X be an H-space with operation p : X x X — X. The
fundamental group m X is abelian, and for alln > 1, the the map py : T, X Xw, X —
X induced by p sends (o, B) to a + 8.

PROOF. The zero element 0 € 7, X is represented by the constant map to xg, so
the identity homotopies provide equations . (a,0) = a@ = p«(0, ). The map pu, is
a homomorphism of groups, so p« (@, 8) = p((a,0)+ (0, 8)) = p(a,0)+ p.(0,8) =
a+ . We also see that p.(a, 8) = p«((0, 8) + (@, 0)) = px(0, 8) + pu(@, 0) = B+,
and thus B +a=a+ 0. O

LEMMA 4.3.3. Direct sum makes |S.M| into an H-space.

PRrOOF. Define a simplicial map SM x SM = SM by (M,N) - M & N.
The natural isomorphisms M &0 = M = 0® M give rise to the needed homotopies,

by [L2.9 o

The method in the lemma above applies also to S~1S(M), |S.PM|, |G.2 M|,
and |G. M|, all of which are H-spaces.

4.4. Comparison of definitions

THEOREM 4.4.1. If C is a small additive category, then there is a natural ho-
motopy equivalence |G.®C| = |S~1S(C)|.

PRrROOF. ... O

THEOREM 4.4.2. If C is a small additive category, then there is a natural ho-
motopy equivalence |G.2C| = Q|S.9C].

ProOOF. ... 0

THEOREM 4.4.3. If C is a small exact category, then there is a natural homotopy
equivalence |S.C| = |QC|.

ProoF. ... 0

THEOREM 4.4.4. IfC is a small exact category, then there is a natural homotopy
equivalence |G.C| = Q|S.C|.
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ProOF. ... 0

THEOREM 4.4.5. If C is a small exact category, then there is a natural homotopy
equivalence |G.C| = Q|S.C|.

ProoF. ... 0

DEFINITION 4.4.6. Suppose C is an exact category. It is also an additive cate-

gory, so both §.9C and S.C are defined. There is a natural map S.®C — S.C defined
as follows. ... There is a natural map G.9®C — G.C defined as follows. ...

THEOREM 4.4.7. If C is a small exact category in which every short exact
sequence splits, then the natural maps |S.9C| — |S.C| and |G.2C| — |G.C| are
homotopy equivalences.

Proor. ... 0

Conversely, we may use the following lemma to regard an additive category as
an exact category (in which every sequence splits) whenever necessary.

LEMMA 4.4.8. IfC is a small additive category, then if the sequences isomorphic
to one of the form 0 — C' — C' & C" — C" — 0 are taken as the short exact
sequences, the result is an exact category (see Definition .

PRrOOF. ... 0



CHAPTER 5

Basic theorems of K-theory

5.1. The additivity theorem

In this section we offer a proof of Quillen’s additivity theorem [[[J]. Quillen’s
original proof in is based on the Q-construction, and uses both pullbacks and
pushouts. We follow Waldhausen’s proof [[l6], Theorem 1.4.2], based on Wald-
hausen’s S-construction. The proof uses just pushouts or just pullbacks; this offers
an important advantage, allowing categories more general than exact categories to
be used in K-theory, leading to Waldhausen’s development of algebraic K-theory
of topological spaces (which is not the same as topological K-theory of topological
spaces.

Our proof differs slightly from Waldhausen’s in that we use Theorem B’ instead
of Theorem B. McCarthy gave a proof in [E] using just Theorem A’, with some
details omitted.

Throughout this section M is an arbitrary small exact category with a chosen
zero object 0 € M.

DEFINITION 5.1.1. For any n > 0 the simplicial set S, M is the set of objects
of an exact category S, M; the arrows are the natural transformations, and the
short exact sequences 0 - M’ — M — M" — 0 are those sequences such that for
all 0 <i < j <n the sequence 0 — M;/i - Mj;; — MJ”/z — 0 is an exact sequence
of M.

To see that S, M is an exact category, suppose M is a full additive subcategory,
closed under extensions, of an abelian category .A. The category Fun(Arrn, A) is an
abelian category, according to , and we can check that S, M is a full additive
subcategory of it closed under extensions. To see that, suppose 0 = M' — M —
M" — 0 is a short exact sequence of functors Arrn — A with M’ and M" in
S, M. For each i < j the exact sequence 0 — M]’./i - M;; — M]’.’z. — 0 has
M]’./i and MJ”/z in M, so M;/; is an object of M, too. For each i < j < k the
diagram in Figure m has exact rows, exact first column and exact last column. By
the 3-by-3 lemma, the middle column is also exact, showing that M is an exact
functor Arrn — M, and thus that M € S, M.

Let & = £(M) be the exact category isomorphic to S2 M whose objects are
the short exact sequences £ : 0 - M — N — P — 0 of M. Define exact functors
s,t,q : &€ - M that send E to M, N, and P, respectively. In other words, we
may display E in the form 0 — sE — tE — qFE — 0. The letters s, t, and ¢ used
here are the initial letters of the phrases “subobject”, “total object”, and “quotient
object”.

THEOREM 5.1.2 (Additivity). The map K(€) 22 K(M) x K(M) is a ho-

motopy equivalence.

44
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0 0 0
0 — Mj; Mjyi My 0
0—>]\/—[1Ic/Z My ; Mllcl/z 0
00— My, Myy; My, 0
0 0 0
FIGURE 1.

ProOOF. Fix a zero object 0 of M. Let £: M — £ be the exact functor defined
by M +— (0 M = M — 0 — 0), and let 7 : M — £ be the exact functor defined
by M+ (0 = 0— M — M — 0). The composite functor ¢ is zero.

It is enough to show that the following sequence is a fibration sequence.

(5.1.1) ISM| 5 (8] L S M|
For then we will have the following long exact sequence of abelian groups.
i KM > KoM S K % KoM = Koy M= -+

The splittings s = 1 and gr = 1 will break the long exact sequence up into split
short exact sequences.

s T

V- N VN
0— K, M K,M 0

‘ q
Hence the map K,& (), (K,,M)? will be an isomorphism, and the map |S.£| (),
|S./\/l|2 will be a weak homotopy equivalence, hence a homotopy equivalence.

In order to prove that ) is a fibration sequence, we will apply Theorem

B' to the map |S.E| =% |S.M| and identify the homotopy fiber with [S.M|
via the map /.

For that purpose, consider m > 0 and M € S,, M. For n > 0, an element of
(M/S.q), is a pair (P, E) with P € SM(m xn) and E € S,,€ satistying M = Pi
and Pj =qFE. Herei: m — m*n and j : n < m *n are the natural inclusions.

Define a map &, : S M — M/S.q on a simplex N € S,M by N — (Mp,{N).
Here p : m*n — m is the unique map that splits 7 in the sense that pi = 1; it sends
all the elements arising from n to the top element m of m. Since pj factors through
the set {m'} with one element, Mpj is a degeneracy of the unique 0-simplex of
S.M, hence is the zero functor, 0. To check that ®5,(N) € (M/S.q), we compute
Mpj =0=¢gfN.
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Suppose now that g : & — m is an arrow of Ord. The map ¢g* : M/S.q —
Mg/S.q it induces between naive homotopy fibers is defined by (P, E) — (P(g *
1,), E). Warning: the following diagram does not necessarily commute.

SM—2M M/S.q

o
Pty l

Mg/S.q

The reason is that the splitting map p, used in the definition of ®j;, is not natural
in m: it depends on the top element of m, and perhaps g does not send the top
element of k to the top element of m.

So we also consider the map ¥y, : M/S.q = S.M defined by (P, E) — sE. It
splits @ in the sense that ¥, 0 ®r = 1, because sf = 1. For g as above, it makes
the following diagram commute.

M/S.q

10

Myg/S.q T SM

We will show that the maps ¥y; and ®,; are inverse homotopy equivalences, for
any M. It will follow from the commutative diagram above that the transition map
M/S.q - Mg/S.q is a homotopy equivalence, and hence the hypothesis of Theorem
B’ is satisfied.

Consider the composite map ®pr 0 ¥pr : M/S.q - M/S.q. It sends a simplex
(P,E) to (Mp,¢sE) = (Pip,tsE). We will construct a simplicial homotopy ®,s o
Uy ~1lasamap H: Al x (M/S.q) - M/S.q. For that purpose, suppose n > 0
and (7, (P, E)) € A}, x (M/S.q)n-

The first component of H (7, (P, E)) (call it P™) will have to interpolate between
P and Pip, so we begin by making an order preserving map h, : m*n — m=n that
interpolates between 1 and ip; it is defined by A, (a') = a’ for a € m, by h,(b") =m/'
if 7(b) = 0, and by h,.(b") = b" if 7(b) = 1. Evidently, h; = 1 and hg = ip, so
that h, does what we want, and P” := Ph, interpolates between P and Pip, i.e.,
P! = P and P° = Pip. Notice also that P"4 = Ph,i = Pi = M, as desired.

The second component of H(r, (P, E)) (call it E%) will have to interpolate
between E and ¢sE, and it should also satisfy ¢Ep = P7j. For all @ € m xn
we have the inequality h;(a) < a. The resulting natural transformation h, — 1
induces a map

(5.1.2) PTj = Ph,j — Pj = qE.

Let EL be the pullback of E along that map. Here we identify E € S,& with the
short exact sequence 0 — sE — tE — ¢gF — 0 in §,, M, and form the pullback
in the exact category S, M, which ensures that E7 is an exact sequence in S, M,
and hence can be identified with an object of §,£. Evidently sEL = sE and
gEL = P7j.

Let’s be more precise about how to form the pullback. We choose in advance all
possible pullbacks in M, and then we use those to form (E});/;, for each i < j € n.
(Actually, we will be modifying that shortly, for it doesn’t quite work.) That
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specifies the functor E} on objects; the values on arrows are determined by the
universal property of pullbacks.

Now let’s check what happens to EL at the endpoints of the 1-simplex. When
7 =1 the map (p.1.9) is the identity, and thus EL =2 E. When 7 = 0 then P7j =
Pipj = 0, i.e., the source of ) is zero, and thus E% = ¢sE. Isomorphisms aren’t
the same as identities, so we don’t quite get the desired homotopy ®as 0 ¥y ~ 1.
There are two ways to proceed at this point. One way is to check that the natural
isomorphisms E} & E and EY = (sE provide homotopies; then we could compose
the three homotopies to get the homotopy we want. Another way is to arrange,
by artifice, for the two isomorphisms to be identities. It seems, when choosing
pullbacks, we should consider whether the source of the arrow (p.1.7) is zero and
whether the arrow is an identity. But there is a conflict: both conditions might be
fullfilled simultaneously. In that case, for the pullback, we would have to choose
between E and ¢sE, and they may be different, despite ¢ = 0. We resolve this
by peeking at the values of 7 on ¢ < j € n: when 7(i) = 7(j) = 1, then we take
(Ep)jsi == Eji; and when 7(i) = 7(j) = 0 then we take (E});/; := £sE;;;. Only
when 7(7) = 0 and 7(j) = 1 do we use the previously mentioned choice of pullbacks
in M to form (E%);/;-

Now let’s check that H is a simplicial map. We suppose that r : ¢ — n is an
arrow of Ord and proceed to check that the following square commutes.

A, x (M/S.q)n —2— (M/S.q)n
A, x (M/S.q). —2— (M/S.q).

Using the previous notation, we must show (H (7, (P, E)))r = H(rr, (P, E)r). Com-
puting both sides, we obtain

(H(r, (P, E))r

(P7,Ep)r
(P"(1*7), Epr)
(Ph,(1x7),Epr)

and
H(rr,(P,E)Yr) = H(rr,(P(1xr),Er))
= (P(Axr)™", (Er)psr)
(P(L*1)hrr, (ET)B14r))

so we must show Ph,(1xr) = P(1x7)h,, and ELr = (ET‘)P(l* )- The first equation

follows from the identity h,(1*7) = (1 *r)h ., which follows immediately from the
definition of h,. For the second equation, let j' : ¢ < m ¢ be the natural inclusion.
We remark that ELr is the pullback of Er along the map P”jr = Ph,.jr — Pjr =
gEr, whereas (Er)P(l*T) is the pullback of gFEr along the map P(1 x 7)hyj' —
P(1x7)j'. Tt is enough to check that the two maps are equal, because of the way
we are computing pullbacks (objectwise). It follows from the first equation that
the sources of the two maps are equal. The maps themselves are equal because
they arise from two natural transformations h,jr — jr and (1% r)h,.j' = (1*7)j'
between functors ¢ — m * n. Any two such natural transformations are equal
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because any arrows in the ordered set m * n with the same source and target are
equal. O

5.2. Applications of the additivity theorem

DEFINITION 5.2.1. A sequence of exact functors 0 -+ F - G—H - 0: M —
N is ezact if for each M € M the sequence 0 — F(M) — G(M) = H(M) — 0 is
a short exact sequence of N.

PROPOSITION 5.2.2. If0 - F - G — H — 0: M — N is a sequence of exact
functors, then G and F ® H induce homotopic maps |S.M| = |SN]|.

ProOF. ... 0
COROLLARY 5.2.3. For all n, we have F, + H, = G, : K,M — K, N.

PRrOOF. Direct sum makes K(N) into an H-space, by [1.3.3, so (F & H), =
F, + H,, according to . |

DEFINITION 5.2.4. Given m and n € Ord, let m * n denote ordered set that
is the quotient of the join m * n obtained by identifying the top element of m
(actually, m') with the bottom element of n (actually, 0"). It is isomorphic to
m + n. Warning: this construction is not natural in m or in n, because maps of
Ord need not preserve top or bottom elements.

An n-simplex of S.M may be thought of as a filtration of length n with extra
information. The following lemma shows that such a filtration of length m + n is
canonically an extension of a filtration of length n by a filtration of length m.

LEMMA 5.2.5. Let M be an exact category. Leti: m — m+*n and j : n — m*n
be the natural inclusions, and let p : m « mxn and q : n « m xn be the
corresponding splittings. For each M € S.M(m*n), there is a short exact sequence
00— Mip—> M — Mjq— 0 in S.M that is natural in M.

PROOF. The element v = m' = 0" comes both from m and n. The maps ip
and jq are the identity on one side of v and send the elements on the other side
to 7. For every a € m *n we have ip(a) < a < jg(a). The corresponding natural
transformations ip — 1 — jq provide the maps Mip -+ M — M jq. Now for each
a < B € mxn we must check that 0 — M8y /ip(a) = Mpja = Mjq(8)/je(a) — 018
an exact sequence of M. If a comes from m and S comes from n, then the sequence
has the form 0 = M, o, = Mg/, — Mg, — 0 and thus is exact. If both a and 3
come from m, then the sequence reduces to 0 = Mpg,, = Mpg;q — 0 — 0, which
is exact. If both o and 8 come from n, then the sequence reduces to 0 — 0 —
Mg/o = Mgo — 0, which is exact. |

COROLLARY 5.2.6. The maps induced by i and j provide a homotopy equiva-
lence S.SpinM L2y 8.8, M x 5.8, M.

ProoF. ... 0

COROLLARY 5.2.7. The maps induced by j and p provide a fibration sequence
1S.SmM| B |S.SminM| L |8.S, M.

PRrROOF. ... 0
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COROLLARY 5.2.8. The map m x 0 « m * n arising from the map 0 « n
and the canonical inclusion m * n < n provide a fibration sequence |S.Sp 1 M| —
|S(S.M(m *n))| = |S.SpM| that is natural in n.

PRrOOF. Identify m *x Q0 with m + 1 and m + 1 xn with m * n. Naturality in
the variable n for a map k£ — n follows from the commutativity of the following
diagram.

mxk<—r=»F
m %0 mx*n n

|

DEFINITION 5.2.9. Let £.M be the simplicial exact category defined by n —
EaM =S M(0xn).

COROLLARY 5.2.10. For each n > 0 there is a fibration sequence |S.M| —
|S.En M| = |5.Sp M|, natural in n.

ProoF. Take m = 0 in the previous corollary. |

DEFINITION 5.2.11. Let S.S.M be the bisimplicial set defined by (m,n) —
SmSnM. Let S.£.M be the bisimplicial set defined by (m,n) — SEM.

COROLLARY 5.2.12. There is a fibration sequence |S. M| — [S.EM| = |S.SM|.

PRrOOF. Regard S.M as the bisimplicial set defined by (m,n) — S, M. Then
we get a sequence of bisimplicial sets S M — S.E.M — 5.5.M which is a fibration
sequence in each row. For each n the space |S.S, M| is connected. Now apply

B-23. 0



CHAPTER 6

Low dimensional K-groups of rings

6.1. K-theory of rings

. define K(M) = |G.PM|, K(R) = |G.9Pg| or K(R) = |S~1S(Pg)| and
K,(R) = m,K(R).

6.2. Ki(R)

EXERCISE 6.2.1. Let C be a small additive category, and let I be the set of
isomorphism classes [C] of objects C of C, and consider I as a commutative monoid
with [C] + [C'] = [C & C']. Let J be the translation category for I acting on
I. Show J is filtering. For each i € I pick C; with i = [C;]. Show that K°C =
colimy Aut(C;)?P, where the transition maps in the inductive system arise by direct
sum with identity automorphisms.

. compute KPR = GI(R)*® = GI(R)/ E(R); show E(R) is perfect. For R a
field, commutative local ring, or Euclidean domain, show K;(R) = R*.

6.3. Homology of Gl(R)

... generalities about homology: H"(|X|,Z)= H*(CZ[X]), H,(G,Z) = H,(BG,Z),
bar resolution; Hurewicz theorem: m;(T) = 0 for j < n implies 7, (T)** = H"(T,Z).
Mention H"(B Gl(R),Z) = H"(K(R),Z), the map BGI(R) — K(R) is acyclic,
the plus-construction B GI(R)™", and functoriality of it, gotten by adding one 2-
cell and one 3-cell; BE(R)T is the universal covering space of K(R), so K»(R) =
H2 (E(R)7 Z) .

6.4. K»(R)
Matsumoto’s presentation for Ko(F) (see [[LT])-

50



APPENDIX A

Category Theory

DEFINITION A.1. A category C is a collection ObjC of “objects” and a collection
ArrC of “arrows” or “maps”. The notation C € C will mean C € ObjC, and the
notation finC will mean f € ArrC. Each arrow f has a “source” object src f and
a target object tar f. The notation f : A — B means A = src f and B = tar f. For
each object C' € ObjC there is provided an “identity” arrow 1¢ € C. For any arrows
f:A—> Band g: B — C there is provided a “composite” arrow go f : A — C.
Composition of arrows is associative: ho(go f) = (hog)o f and “identity” arrows
are identities for composition: fols = f = lgof. We use Hom¢ (A, B) or simply
Hom(A, B) to denote the collection of arrows f : A — B. We assume further that
Home (A, B) is always a set.

DEFINITION A.2. An isomorphism is ...
DEFINITION A.3. A groupoidis a category all of whose arrows are isomorphisms.

DEFINITION A.4. If C is a category, we define IsoC to be the subcategory of C
whose arrows are the isomorphisms of C. It is a groupoid.

DEFINITION A.5. A functor H : C — D that sends every arrow to an isomor-
phism is called morphism inverting. A morphism inverting functor is the same
thing as a functor H : C — IsoD.

DEFINITION A.6. A small category is a category C where ObjC is a set. Since
we have already assumed that each collection Hom¢ (A, B) is a set, it follows that
Arr(C is also a set.

DEFINITION A.7. A linear category is a category where each Hom¢(A, B) is
provided with an addition operation f + g that makes it into an abelian group. In
addition, composition is bilinear: (f+g)oh = foh+gohand fo(g+h) = fog+ foh.

DEFINITION A.8. Let C and D be categories. A functor G : C — D assigns
to each object C' € C an object G(C) € D and assigns to each arrow f: C — C'
of C an arrow G(f) : G(C) — G(C"). It sends identity arrows to identity arrows,
G(1c) = 1g(c), and is compatible with composition, G(g o f) = G(g) o G(f).

DEFINITION A.9. A natural transformationp: F — G is ...
DEerFINITION A.10. ... composition of natural transformation with functors ...
DEFINITION A.11. A natural isomorphism F = G is ...

DEFINITION A.12. A faithful functor F' : C — D is a functor such that for
any objects C and C' of C, the function F' : Hom¢(C,C') — Homp(FC, FC")
is injective. If the function is always a bijection, then F' is called a fully faithful
functor or a fully faithful embedding.
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DEFINITION A.13. A subobject B of an object C' is an equivalence class of
monomorphisms B — C, where two monomorphisms B ~— C and B' — C are
equivalent if there is an isomorphism B BN S making the following diagram com-
mute.

B——C

%

BI

DEFINITION A.14. In an additive category C, the direct sum of a finite collection
{C1,...,Cp} of objects is an object C together with “inclusion” maps in; : C; = C
and “projection” maps pr; : C' — C; for 1 < i < n. These maps satisfy the following
identities: pr;oin; = 1g;; pr;oin; = 0 if 4 # j; and Z?:l in;opr; = 1¢. We will
write C=C1®---® C.

DEFINITION A.15. An additive category is an additive category C where any
finite collection {Ci,...,Cp} of objects has a direct sum. The case where n = 0
and the collection is empty is included, providing an object called 0 whose identity
arrow is zero.

DEFINITION A.16. A diagram in a category C is a functor F' : T — C where
7 is a small category, called the index category. The objects and arrows of Z may
be thought of as the “names” of the objects and arrows of the diagram, i.e., i € 7
is the name attached to F(i). The empty diagram is the diagram indexed by the
empty category.

We often illustrate a diagram F' by displaying just the objects F; := F(i) and
the arrows F(f) for f : i« — j. The shape of the index category can be inferred.
Here are some examples of diagrams.

R ——F, Go —? G
F2 HO —>H1 H2

DEFINITION A.17. The limit of a diagram F' : 7 — C is an object C together
with a map C' — F'(i) for each object i € Z, such that, for every arrow f:i — j in
Z, the triangle

\ lF(f)
F(j)
commutes. Moreover, C', with its arrows, is universal in the sense that if there is

another object C' together with a map C' — F'(i) for each object i € Z, such that,
for every arrow f :4 — j in Z, the triangle

¢ — F(i)

N

F(5)
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commutes, then there is a unique arrow C' — C, such that, for every object ¢ € Z,
the diagram

commutes.

We write C =lim F' or C = lim;e7 F(3).

Another way to think about a limit is that it amounts to a universal natural
transformation from a constant functor to the functor F'.

The limit may not exist, but if it does exist it is unique up to a unique isomor-
phism.

DEFINITION A.18. A terminal or final object is the limit of the empty diagram.
Alternatively, there is a unique arrow to it from any object.

DEFINITION A.19. A category is called discrete if every arrow in it is an identity
arrow.

A discrete category is determined, up to isomorphism, by its set of objects. A
diagram indexed by a discrete category amounts to the same things as an indexed
collection of objects.

DEFINITION A.20. The product of an collection of objects {F; | i € 7} indexed
by a set Z is the limit of the corresponding diagram indexed by the corresponding
discrete category.

DEFINITION A.21. The pullback of a diagram
B

C——D
is the limit of the diagram.

DEFINITION A.22. The equalizer of a pair of arrows A = B is the limit of the
diagram.

DEFINITION A.23. In an additive category the kernel of a map f: A — B is
the limit of the following diagram and is denoted by ker f.

0

|

A——B

LEMMA A.24 (Functoriality of limits). Suppose T and J are small categories,
F:T—Cand G :J — C are functors, and the limits lim F' and lim G exist. If
H:J —Tis a functor and n : FH — G is a natural transformation, then there
is a unique map h : im F — lim G such that, for every object j € J, the following
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diagram commutes.
lim F —— F(H(j))

lim G — G(j)

PROOF. The proof proceeds by applying the universal property defining lim G,
using the following commutative diagram, where f : j — j' is an arbitrary arrow

of 7.

F(H("))
%)

1111|1F—>F(H(j)) ;!

|
32: Lz G(j")

|

y G
lim G G(j)

O

Now we repeat all the definitions above, with the arrows going the other way,
and the prefix “co-” attached to the terms. Alternatively, one could work in the
opposite category.

DEFINITION A.25. The colimit of a diagram F' : 7 — C is an object C together
with a map F (i) — C for each object 7 € Z, such that, for every arrow f :i — j in
Z, the triangle

ol 7

F(j)
commutes. Moreover, C', with its arrows, is universal in the sense that if there is
another object C! together with a map F'(i) — C' for each object 7 € Z, such that,
for every arrow f :4 — j in Z, the triangle

F@)—— '
F(f)l /
F(j)

commutes, then there is a unique arrow C — C', such that, for every object ¢ € Z,
the diagram

commutes.
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We write C' = colim F' or C' = colim;ez F(3).

Another way to think about a colimit is that it amounts to a universal natural
transformation from the functor F to a constant functor.

The colimit may not exist, but if it does exist it is unique up to a unique
isomorphism.

DEFINITION A.26. An initial object is the colimit of the empty diagram. Al-
ternatively, there is a unique arrow from it to any other object in the category.

DEFINITION A.27. The coproduct of an collection of objects {F; | i € 7} indexed
by a set Z is the colimit of the corresponding diagram indexed by the corresponding
discrete category.

DEFINITION A.28. The pushout of a diagram

%B

Q=—>nr

is the colimit of the diagram.

DEFINITION A.29. The coequalizer of a pair of arrows A = B is the colimit of
the diagram.

DEFINITION A.30. In an additive category the cokernel of a map f: A — B is
the colimit of the following diagram and is denoted by coker f.

|

LEMMA A.31 (Functoriality of colimits). Suppose Z and J are small categories,
F:T—CandG:J — C are functors, and the colimits colim F' and colim G ezist.
If H:T — J is a functor and n : F — GH s a natural transformation, then
there is a unique map h : colim F' — colim G such that, for every object i € T, the
following diagram commutes.

%B

F(i) — colim F

-

G(H(i)) —— colim G

PRrROOF. The proof proceeds by applying the universal property defining colim G,
using the following commutative diagram, where f : ¢ — 4’ is an arbitrary arrow of
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F(i'") —colim F

2z |
I

F(5) U ]

(")) — cohm G

H(f))

DEFINITION A.32. A category Z is filtering if ...
( Insert here some discussion of filtered colimits ... )

LEMMA A.33. Let F be a collection of subsets of a set S which is closed under
intersection, i.e., if T € F and T' € F, then TNT' € F. Regard F as a diagram
in which the arrows are the inclusions of one subset into another. Then the natural
map 1 : colimrer T = Upe T is an bijection.

PRrROOF. We may regard the colimit colimpe# T as being defined by generators
(T,t) with t € T € F and by relations (T,¢) = (T',t) when t € T C T'. The map
7 sends the generator (T,t) to ¢, and is surjective. To show injectivity, consider
two generators, (T,t) and (7",t), with the same image under 5. The relations
(T,t) = (T'NT' t) = (T',t) show they give the same element in the colimit. O

DEFINITION A.34. In an additive category C where kernels and cokernels always
exist, we define the image of a map f : A — B to be the kernel of the map
B — coker f, and it is denoted by im f.

DEFINITION A.35. In an additive category C where kernels and cokernels always
exist, we define the coimage of a map f : A — B to be the cokernel of the map
ker f — A. It is denoted by coim f.

DEFINITION A.36. An abelian category is an additive category C where every
map f: A — B has a kernel and a cokernel, and the natural map coim f — im f
is always an isomorphism. An alternative for the latter condition is that every
mononomorphism in C should be a kernel, and every epimorphism in C should be
a cokernel.

DEFINITION A.37. An exact sequence A L. B % C in an abelian category is
one where ker g and im f are equivalent subobjects of B.

DEFINITION A.38. An ezact functor F' : A — B between abelian categories is
an additive functor which sends exact sequences to exact sequences.

The main fact about abelian categories is that all the standard diagram chas-
ing lemmas for diagrams of R-modules remain valid in any abelian category. These
include the snake lemma, the 3-lemma, the 5-lemma, the 3-by-3 lemma, and all
the diagram chasing arguments used in homological algebra. See the section “Di-
agram Lemmas” in [[, VIIL4] for a device to establish that statement; it involves
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“members” of an object of an abelian category as a replacement for elements of
modules. Alternatively, a small abelian category can be embedded into a category
of R-modules for a suitable ring R by a fully faithful exact functor; see , .

DEFINITION A.39. Let A be a category, and let 7 be a small category. The
category Fun(Z, A) has as its objects functors M : Z — A. The arrows M' - M
are the natural transformations.

LEMMA A.40. Let A be an abelian category, and let T be a small category. The
category Fun(Z, A) is an abelian category.

PRrROOF. The kernel of an arrow f : M' — M of Fun(Z,.A) can be constructed
by defining (ker f)(i) := ker(f(¢) : M'(i) — M(%)). Similarly for cokernels, and an
exact sequence 0 — M’ — M — M" — 0 is a sequence of functors such that for all
objects ¢ € Z, the sequence 0 — M'(i) — M (i) — M" (i) — 0 is an exact sequence
of A. d

DEFINITION A.41. Supose C and D are categoriesand F': C > Dand G: D —
C are functors. The functors F' and G are called adjoint functors, F' is called the
left adjoint functor of G, and G is called the right adjoint functor of F if there is
an isomorphism

o

(A].) BC,D : Hom¢ (C, G(D)) — HOHI’D(F(C), D)

which is natural in both variables C' and D. The triple consisting of F', G, and
is called an adjunction.

REMARK A.42. Associated with an adjunction as above is a pair of natural
transformations 7 : 1¢ = GF (called the unit of the adjunction) and € : FG — 1p
(called the counit of the adjunction). For example, to obtain n substitute D =
F(C) in (A1) to get a natural isomorphism f¢ p(cy : Home(C,G(F(C))) =N
Homp(F(C), F(C)). Define e¢ = ﬂa’lF(C)(lF(c)). Naturality of 8¢ p can be used
to show that € is a natural transformation.

For more details on adjunctions, see [}, IV.1].

DEFINITION A.43. We say that a functor G : C — D preserves limits if, when-
ever F' : 7T — C is a diagram in C whose limit lim F' exists, the natural maps
G(lim F') — G(F (7)) express G(lim F) as the limit of the diagram GF'.

DEFINITION A.44. We say that a functor G : C — D preserves colimits if,

whenever F': 7 — C is a diagram in C whose limit colim F’ exists, the natural maps
G(F(i)) - G(lim F) express G(colim F') as the colimit of the diagram GF.

LEMMA A.45. Any functor that is o left adjoint preserves colimits. Any functor
that is a right adjoint preserves limits.

PROOF. We prove just the first statement. Suppose F' : C — D is left adjoint
to the functor G : D — C, and suppose C = colim; C; in C. Then we have the
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following sequence of natural isomorphisms.

IR

Hom(F(C), D)

IR

IR

Hom(C,G(D))
Hom(coliim C;,G(D))

lim Hom(C;, G(D))
lim Hom(F(C;), D)
Hom(colim F(C};), D)

By (R.3.9) applied to C°P we see that F(C) = colim; F(C}).



APPENDIX B

Notation

x as in R*, which denotes the multiplicative group of units in the ring R.

Xg as in T xg S, where G is a group acting on 7' on the right and acting on S
on the left, denotes the set defined by generators (¢,s) € T x S and relations
(t,98) = (tg,s) for all g € G.

as in x ~ vy, is used occasionally and briefly to denote an equivalence relation.

as in f ~ g, which means f and g are homotopic continuous maps.

asin h: f ~ g, which means h is a homotopy between f and g.

as in m*, which denotes the pointed set {*,1,2,...,m}.

asin f: X = Y, which means the map f is a homotopy equivalence.

asin X ~ Y, means X and Y are homotopy equivalent topological spaces.

as in C € C, where C is a category, means that C is an object of C.

asin X 2 Y, which means X and Y are isomorphic objects of a category.

2

Rmi R + 2

1%

asin f: X =, Y means the map f is an isomorphism.

T U U is the disjoint union of two sets.

* is the basepoint of a pointed set or space.

F, is the map on K-groups induced by an exact functor, see [L.2.d.

T « U is the join of two partially ordered sets, see B.1.1]

X %Y is the join of two topological spaces or of two simplicial sets, see j3.1.9.

T* is the partially ordered set T with its finite subsets neglected; see D 4.9,

[0,1]* is the unit interval with finite subsets neglected; see and P.4.9.

n is the partially ordered set {0 < 1 < --- < n}, often regarded as a category. See
B34

# as in #A, which denotes the cardinality of the set A.

1x is the identity map X — X.

¢ is the empty set.

QX is the loop space of a pointed topological space X.

fx where X : C — Set is a functor, C € C, z € X(C), and f : C — C' is an arrow

of C, denotes (X (f))(x).

xf where X : C°? — Set is a functor, C € C, x € X(C), and f : C' — C is an arrow
of C, denotes (X (f))(z).

C is the field of complex numbers.

Cat is the category of small categories. The arrows are the functors.

Covx is the category of covering spaces of X.

Dy, is the standard simplex presented in alternate coordinates. See .

A™ is the simplicial simplex of dimension n; it is the simplicial set represented by
n. See P.3.9.

|A"| is the standard simplex of dimension n. See P.1.1|.

FPSet is the category of finite pointed sets.

Gl,, R is the group of n by n invertible matrices with entries in the ring R.
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60 B. NOTATION

I is the unit interval [0, 1].

in; denotes the inclusion map corresponding to the j-th factor of a coproduct, or,
in the case of pointed objects, a product.

IsoC is the subcategory of the category C whose arrows are the isomorphisms of C.

K$C is the direct sum Grothendieck group of an additive category, see .

K2C is the direct sum K-group of an additive category, see {..1.4.

K,C is the Grothendieck group of an exact category, see [1.2.3.

Map(C, D), where C and D are small categories, is the category of functors C — D,
in which the arrows are the natural transformations between such functors.

Map(X,Y), where X and Y are simplicial sets, is the simplicial set of maps from
X to Y, in which an n-simplex is a map |A”| x X = Y. If either X or Y is a
category, we replace it by its nerve to reduce to the previous case.

M is the exact category of finitely generated R-modules.

N=1{0,1,2,3,...} is the set of natural numbers.

op as in C°P, where C is a category, which denotes the opposite category of C, or as
in T°P, where T is a partially ordered set, which denotes the opposite partially
ordered set.

Ord is the category of finite nonempty (totally) ordered sets of the form n for some
n € N. See 3.9

pr; denotes the projection onto the j-th factor of a product.

‘Pr, where R is a ring, denotes the exact category of finitely generated projective
left R-modules; see [L.2.9

Pre O, where O is a small category, denotes the category of presheaves on O.

Px, where X is a topological space, denotes the exact category of real vector
bundles of finite rank over X; see .

Poset is the category of partially ordered sets, sets 7" with an ordering satisfying
a<b<c¢c = a<canda<b<a = a=0b. Anarrow f: T - T'is a
function satisfying a <b = f(a) < f(b).

Poset™ is a category whose objects are partially ordered sets equipped with a family
of essential subsets. See for details.

Q is the field of rational numbers.

R is the field of real numbers.

R* is the multiplicative group of units in the ring R.

S.C is the S-construction of Waldhausen, a simplicial set; see [[.2.]]

S.C is the S-construction of Waldhausen, a simplicial exact category; see p.1.]]

Set denotes the category of sets.

Simp is the category of standard simplices. Se.

Sub 7 is a certain category of arrows of Z, see [3.1.5.

Set”, where G is a group, denotes the category of left G-sets.

Top is the category of topological spaces.

U, is the Lie group of n by n unitary matrices.

Z is the ring or group of integers.




APPENDIX C

Bacground terminology

base point: A designated point of a set or space, usually called x.

compactly generated space: a space X homeomorphic to the colimit of its compact
subspaces. Equivalently, a subset W C X is closed if its intersection with any
compact subspace C' C is closed in C.

concrete category: a category C equipped with a faithful functor U : C — Set. The
category of spaces, Spaces, is a concrete category. If C' € C, then U(C) is called
the underlying set of C, and ¢ € C will mean ¢ € U(C). An arrow f:C' — C
in C might as well be identified with the function U f.

contractible space: a space Y for which the map Y — % is a homotopy equivalence.
Here * denotes the one point space.

deformation retraction: A deformation retraction of a space X onto a subspace
Y C X is a homotopy h from 1x to i or, where ¢ : Y — X is the inclusion
mapping, r : X — Y is a retraction, and h(t,y) = y for all y € Y. It follows
that X ~ Y, and ¢ and r are inverse homotopy equivalences.

faithful functor: A functor F' : C — D for which the corresponding functions
Hom(C',C) — Hom(F(C"), F(C)) are injective.

full subcategory: A subcategory C of a category D is called a full subcategory if
Home(C', C) = Homp (C', C) for any C,C" € C.

fully faithful functor: A functor F' : C — D is a fully faithful functor if the function
Hom(C',C) — Hom(F(C"), F(C)) is a bijection for any C,C" € C.

homotopic: Two continuous maps f,g : X — Y are homotopic if there is a homo-
topy between them. Being homotopic is an equivalence relation on Hom(X,Y),

homotopy: A homotopy between two continuous maps f,g: X — Y is a continuous
map h: I x X =Y such that h(0,z) = f(z) and h(1,z) = g(x) for all z € X.
If X and Y are pointed spaces and f and g are basepoint preserving maps,
then we also require that h(t,*) = * for all ¢ € I.

homotopy class: A homotopy class of continuous maps X — Y is an equivalence
class in Hom(X,Y") for the equivalence relation “being homotopic”. A homo-
topy class X = Y can be composed with a homotopy class Y — Z to yield a
well-defined homotopy class X — Z, and thus the homotopy classes can serve
as the arrows in a new category, the “homotopy category”.

homotopy equivalence: A continuous map f : X — Y is a homotopy equivalence if
thereis amap ¢g: Y — X such that fog ~ 1y and go f ~ 1x. In other words,
it’s a map that becomes an isomorphism in the homotopy category. The maps
f and g are called inverse homotopy equivalences.

join: The join X xY of two topological spaces X and Y is the quotient of X x
[0,1] xY that identifies all (x,0,y) with (z,0,y') and all (z,1,y) with (2',1,y).
It contains a copy of X, a copy of Y, and and for every point of X and every
point of Y it contains a line segment connecting them.

61



62 C. BACGROUND TERMINOLOGY

locally finite open covering: An open covering U of a topological space X such that
each point € X has an open neighborhood meeting only finitely many of the
open sets in .

locally simply connected: A topological space X where any neighborhood of any
point z contains a simply connected neighborhood of z.

opposite category: If C is a category, then C°P? denotes the opposite category of C.
The objects are the same, and the arrows are the same, except that they point
in the opposite direction, i.e., Homcos (C', C') = Hom¢(C, C").

paracompact space: A Hausdorff topological space such that every open covering of
it has a locally finite refinement.

partition of unity: A collection of continuous functions f; : X — [0,1] on a topo-
logical space X ...

pointed set or space: A set or space with a base point. Maps f : X — Y satisfy
f) ==

retraction: A retraction of a space X onto a subspace Y C X is a continuous map
r: X — Y such that r(y) =y forally € Y.

ring: The rings in this book are all assumed to contain an identity element 1 for
the multiplication operation.

simply connected: A topological space X for which any loop S! — X is homotopic
to a constant loop.

weak homotopy equivalence: A continuous map f: X — Y of topological spaces is
a weak homotopy equivalence if for every point z € X and for every n > 0 the
induced map 7, (X, z) = 7,(Y, f(z)) is an isomorphism.
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