
Problem 4.7, 10: Let x be the width of the box and y be the height of the box. The volume is x2y, so
x2y = 32000. The material used in the construction of the box can be assessed using its area. The area of the
base is x2 and the area of each side is xy, so the total area used is A = x2+4xy. We must minimize A. Rewrite
it in terms of x alone by using y = 32000/x2 to eliminate y. We get A = x2 +4x(32000/x2) = x2 +128000/x.
Compute dA/dx = 2x − 128000/x2. Solve dA/dx = 0, i.e., 2x = 128000/x2 to get x = 640001/3 = 40.
Thus y = 32000/x2 = 32000/1600 = 20. Since dA/dx = (2x3 − 128000)/x2, by examining the numerator
2x3 − 128000 we see that dA/dx is positive for x > 40 and negative for x < 40, and thus the critical point
is a local minimum. Since it’s the only critical point, it’s the global minimum. The box is 40× 40× 20.

Problem 4.7, 18: Minimize the distance D from (0,−3) to (−y2, y). We see that D2 = (y2)2 + (y + 3)2,
and we might as well minimize E = D2 instead. Simplify E = y4 + (y + 3)2. Compute dE/dy = 4y3 +
2(y + 3) = 4y3 + 2y + 6. Solve dE/dy = 0. By inspection we see that dE/dy = 0 when y = −1. Since
d2E/dy2 = 12y2 + 2 > 0, we see that dE/dy is an increasing function, so has only one root. Therefore y = 1
is the only critical number. From the geometry, it must give a minimum. The point is (−1,−1).

Problem 4.7, 30: Let x be the width and y be the height of the poster. Then 180 = xy and we are to
maximize P = (x− 2)(y− 3). Eliminate y to get P = (x− 2)(180/x− 3). Solve dP/dx = 0 to get x = 2

√
30,

so y = 180/(2
√

30). It’s the only critical point of a positive function, and at the endpoints of the interval we
have P = 0, so it must be a maximum.

Problem 4.7, 40: Using high school geometry as explained in class we see that AB = 4 cos θ and BC = 4θ.
The total time is T (θ) = AB/2 + BC/4 = 2 cos θ + θ. Solve dT/dθ = 0 to get sin θ = 1/2, i.e., θ = π/6.
Comparing numerical values: T (0) = 2, T (π/6) ≈ 2.26, T (π/2) ≈ 1.57, we see that θ = π/2 gives the
smallest value, so she should walk all the way.

Problem 4.7, 48: As suggested in class, we avoid trigonometry by letting x = RT be our parameter, so that
QR = QT − x. We must minimize the length of the rope L =

√
x2 + ST 2 +

√
(QT − x)2 + PQ2. Compute

dL/dt = x/
√
x2 + ST 2 − (QT − x)/

√
(QT − x)2 + PQ2. Setting dL/dt = 0 we see that x/

√
x2 + ST 2 =

(QT − x)/
√

(QT − x)2 + PQ2, i.e., that RT/RS = RQ/RP . By high school geometry (side-angle-side) ,
the two triangles are similar, and thus θ1 = θ2. Alternatively, we see that cos θ1 = cos θ2, and thus θ1 = θ2,
because both θ1 and θ2 lie in the interval [0, π/2], on which cos is decreasing, and thus one-to-one.

Problem 4.7, 50: As explained in class, we want to find the minimum length the blue line can have.
There are many ways to do this problem. Following the book we may use the angle θ as a parameter; we find
that the length of the pipe is L = 9/ sin(θ)+6/ cos(θ). Differentiating, we get dL/dθ = −9 cos(θ)/(sin(θ))2 +
6 sin(θ)/(cos(θ))2. Setting dL/dθ = 0 we get 9 cos(θ)/(sin(θ))2 = 6 sin(θ)/(cos(θ))2; multiplying out we get
6(sin(θ))3 = 9(cos(θ))3, or (tan(θ))3 = 9/6, so that θ = tan−1( 3

√
9/6) ≈ 0.852771. Substituting that in the

original formula for L we get L ≈ 21.0704 feet. To see that it’s an absolute minimum, observe that it is the
only critical point, and that L approaches ∞ as θ approaches either 0 or π/2.

One can also this one without trigonometry. Let A be the point where the pipe touches the left wall,
B the point where it touches the inside corner, and C the point where it touches the upper wall. Drop a
perpendicular from A to the opposite wall to meet it at a point D. Drop a perpendicular from C to the
opposite wall to meet it at a point E. Let x = BE be our main parameter. Let w = AB, z = BC, and observe
that AD = 9 and CE = 6. The two triangles ADB and BEC are similar, so w/9 = z/x, from which it follows
that w = 9z/x; this seems simpler that using the theorem of Pythagoras to get a formula for w. We want to
minimize the length L = z+w = z+ 9z/x = z(1 + 9/x). Notice that z =

√
x2 + 62, and that can be used to

write L as a function of x, but let’s keep the symbol z around for a while. We want to compute dL/dx, but first
let’s compute dz/dx = (d/dx)

√
x2 + 62 = (1/2)(x2 + 62)−1/2 · 2x = x/

√
x2 + 62 = x/z. Now by the product

rule dL/dx = (d/dx)(z(1 + 9/x)) = dz/dx · (1 + 9/x) + z · (d/dx)(1 + 9/x) = (x/z)(1 + 9/x) + z · (−9/x2) =
(x + 9)/z − (9z)/x2 = ((x + 9)x2 − 9(z2))/(zx2) = (x3 + 9x2 − 9(x2 + 62))/(zx2) = (x3 − 9 · 62)/(zx2).



Setting dL/dt = 0 we get x3 = 9 · 62, so grabbing a calculator, we see that x = 3
√

54 · 6 ≈ 6.86829, and
z =
√
x2 + 62 ≈ 9.11994, and thus gives L = z(1 + 9/x) ≈ 21.0704 feet.

Problem 4.7, 52: We want to maximize the area A = (10+10 cos(θ))(10 sin(θ)) = 100(1+cos(θ))(sin(θ)).
Compute dA/dt = 100((− sin(θ))(sin(θ)) + (1 + cos(θ))(cos(θ))) = 100(−(sin(θ))2 + cos(θ) + (cos(θ))2).
Writing (sin(θ))2 = 1 − (cos(θ))2 we get dA/dt = 100(−1 + cos(θ) + 2(cos(θ))2). Setting dA/dt = 0 we get
−1+cos(θ)+2(cos(θ))2 = 0. Setting x = cos(θ) we get 2x2 +x−1 = 0. Using the quadratic formula we find
x = 1/2 or x = −1. Since 0 ≤ θ ≤ π/2, we can rule out the solution where cos(θ) = x = −1. That leaves
cos(θ) = x = 1/2, so θ = π/3. Since the area is 0 when θ = 0, it must be increasing when 0 < θ < π/3.
Since the quadratic polynomial had two roots, dA/dt changes sign as x crosses 1/2, and so A is decreasing
when π/3 < θ < π/2. Thus A has a maximum at θ = π/3.

Problem 4.7, 54: We want to maximize θ = tan−1((h + d)/x) − tan−1(d/x) for x ≥ 0. Compute
dθ/dx = (h2d + hd2 − hx2)/((x2 + (h + d)2)(x2 + d2)) and try to solve dθ/dx = 0, getting x =

√
d(h+ d).

Since θ approaches 0 as x approaches 0 or ∞, this single critical point must be an absolute maximum.

Problem 4.7, 56: (a) Let D be the marked point at the right end of the main branch, so that a = AD.
Thus sin(θ) = b/BC and cos(θ) = (a− AB)/BC. Solving for the lengths AB and BC, plugging them into
the formula for R, and adding the two results, gives the desired formula for the total resistance.

(b) Compute dR/dθ = bC(1/ sin(θ))(1/(r4
1 sin(θ))−(1/(r4

2 tan(θ)))). Setting dR/dθ = 0 leads to cos(θ) =
r4
2/r

4
1.
(c) In this case cos(θ) = 24/34, so we use a calculator and find that θ ≈ 1.37196, which is about 79

degrees.


